REVIEW ARTICLE

Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites

  • Jianbin Mo 1 ,
  • Haixu Wang 1 ,
  • Mengzhen Yan 1 ,
  • Jianhua Huang 1 ,
  • Rui Li 1 ,
  • Danting Sun 1 ,
  • Junjie Lei 1 ,
  • Xueqing Qiu 3 ,
  • Weifeng Liu , 1,2
Expand
  • 1. Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • 2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
  • 3. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
weifengliu@scut.edu.cn

Received date: 23 Oct 2022

Accepted date: 12 Jan 2023

Published date: 15 Oct 2023

Copyright

2023 Higher Education Press

Abstract

Lignin is the largest natural aromatic biopolymer, but usually treated as industrial biomass waste. The development of lignin/polymer biocomposites can promote the high value utilization of lignin and the greening of polymers. However, the weak interfacial interaction between industrial lignin and polymer induces poor compatibility and serious agglomeration in polymer owing to the strong intermolecular force of lignin. As such, it is extremely difficult to prepare high performance lignin/polymer biocomposites. Recently, we proposed the strategy of in situ construction of interfacial dynamic bonds in lignin/polymer composites. By taking advantage of the abundant oxygen-containing polar groups of lignin, we inserted dynamic bonding connection such as hydrogen bonds and coordination bonds into the interphase between lignin and the polymer matrix to improve the interfacial interactions. Meanwhile, the natural amphiphilic structure characteristics of lignin were utilized to construct the hierarchical nanophase separation structure in lignin/polymer composites. The persistent problems of poor dispersity and interfacial compatibility of lignin in the polymer matrix were effectively solved. The lignin-modified polymer composites achieved simultaneously enhanced strength and toughness. This concise review systematically summarized the recent research progress of our group toward building high-performance lignin/polymer biocomposites through the design of interfacial dynamic bonds (hydrogen bonds, coordination bonds, and dynamic covalent bonds) between lignin and different polymer systems (polar plastics, rubber, polyurethane, hydrogels, and other polymers). Finally, the future development direction, main challenges, and potential solutions of lignin application in polymers were presented.

Cite this article

Jianbin Mo , Haixu Wang , Mengzhen Yan , Jianhua Huang , Rui Li , Danting Sun , Junjie Lei , Xueqing Qiu , Weifeng Liu . Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(10) : 1372 -1388 . DOI: 10.1007/s11705-023-2302-3

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 22222805, 22038004, and 22078116), Guangdong Provincial Key Research and Development Program (Grant No. 2020B1111380002), Natural Science Foundation of Guangdong Province (Grant No. 2021A1515010121).
1
Rinaldi R, Jastrzebski R, Clough M T, Ralph J, Kennema M, Bruijnincx P C A, Weckhuysen B M. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition, 2016, 55(29): 8164–8215

DOI

2
Chen J, Fan X L, Zhang L D, Chen X J, Sun S L, Sun R C. Research progress in lignin-based slow/controlled release fertilizer. ChemSusChem, 2020, 13(17): 4356–4366

DOI

3
Jiang T D. Lignin, 2nd ed. Beijing: Chemical Industry Press, 1988, 2–3 (in Chinese)

4
Thakur V K, Thakur M K, Raghavan P, Kessler M R. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1072–1092

DOI

5
Ivar do Sul J A, Costa M F. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chemical Reviews, 2016, 116(4): 2275–2306

DOI

6
da Costa J P, Santos P S M, Duarte A C, Rocha-Santos T. (Nano)plastics in the environment—sources, fates and effects. Journal of Hazardous Materials, 2018, 344: 179–199

7
do Sul J A I, Costa M F. The present and future of microplastic pollution in the marine environment. Environmental Pollution, 2014, 185: 352–364

DOI

8
Wang J F, Zhang D H, Chu F X. Wood-derived functional polymeric materials. Advanced Materials, 2021, 33(28): 2001135

DOI

9
Ridho M R, Agustiany E A, Rahmi Dn M, Madyaratri E W, Ghozali M, Restu W K, Falah F, Rahandi Lubis M A, Syamani F A, Nurhamiyah Y, Hidayati S, Sohail A, Karungamye P, Nawawi D S, Iswanto A H, Othman N, Mohamad Aini N A, Hussin M H, Sahakaro K, Hayeemasae N, Ali M Q, Fatriasari W. Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Advances in Materials Science and Engineering, 2022, 2022: 1363481

DOI

10
Hussin M H, Appaturi J N, Poh N E, Latif N H A, Brosse N, Ziegler D I, Vahabi H, Syamani F A, Fatriasari W, Solihat N N, Hussin M H, Appaturi J N, Poh N E, Latif N H A, Brosse N, Ziegler-Devin I, Vahabi H, Syamani F A, Fatriasari W, Solihat N N, Karimah A, Iswanto A H, Sekeri S H, Ibrahim M N M. A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules, 2022, 200: 303–326

DOI

11
Spiridon I, Leluk K, Resmerita A M, Darie R N. Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering, 2015, 69: 342–349

DOI

12
Collins M N, Nechifor M, Tanasa F, Zanoaga M, McLoughlin A, Strozyk M A, Culebras M, Teaca C A. Valorization of lignin in polymer and composite systems for advanced engineering applications—a review. International Journal of Biological Macromolecules, 2019, 131: 828–849

DOI

13
Kai D, Tan M J, Chee P L, Chua Y K, Yap Y L, Loh X J. Towards lignin-based functional materials in a sustainable world. Green Chemistry, 2016, 18(5): 1175–1200

DOI

14
Iyer A K, Torkelson M J. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 959–968

DOI

15
Buono P, Duval A, Verge P, Averous L, Habibi Y. New insights on the chemical modification of lignin: acetylation versus silylation. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5212–5222

DOI

16
Agustiany E A, Rasyidur Ridho M, Rahmi D. N M, Madyaratri E W, Falah F, Lubis M A R, Solihat N N, Syamani F A, Karungamye P, Sohail A, Nawawi D S, Prianto A H, Iswanto A H, Ghozali M, Restu W K, Juliana I, Antov P, Kristak L, Fatriasari W, Fudholi A. Recent developments in lignin modification and its application in lignin-based green composites: a review. Polymer Composites, 2022, 43(8): 4848–4865

DOI

17
Zhou X, He T Z, Jiang Y H, Chang S C, Yu Y, Fang X C, Zhang Y. A novel network-structured compatibilizer for improving the interfacial behavior of PBS/lignin. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8592–8602

DOI

18
Dehne L, Vila C, Saake B, Schwarz K U. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. Journal of Applied Polymer Science, 2017, 134(11): 44582

DOI

19
Duval A, Avérous L. Mild and controlled lignin methylation with trimethyl phosphate: towards a precise control of lignin functionality. Green Chemistry, 2020, 22(5): 1671–1680

DOI

20
de Oliveira D R, Avelino F, Mazzetto S E, Lomonaco D. Microwave-assisted selective acetylation of Kraft lignin: acetic acid as a sustainable reactant for lignin valorization. International Journal of Biological Macromolecules, 2020, 164: 1536–1544

DOI

21
Wu Q, Zhang X Y, Si C L, Zhang M, Li C X, Dai L. Green and stable lignin-based nanofillers reinforced poly(L-lactide) with supertough and strong performance. International Journal of Biological Macromolecules, 2022, 221: 1041–1052

DOI

22
Abdelwahaba M A, Misraa M, Mohanty A K. Injection molded biocomposites from polypropylene and lignin: effect of compatibilizers on interfacial adhesion and performance. Industrial Crops and Products, 2019, 132: 497–510

DOI

23
Ragauskas A J, Beckham G T, Biddy M J, Chandra R, Chen F, Davis M F, Davison B H, Dixon R A, Gilna P, Keller M, Langan P, Naskar A K, Saddler J N, Tschaplinski T J, Tuskan G A, Wyman C E. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014, 344(6185): 1246843

DOI

24
Lee S M, Pippel E, Gösele U, Dresbach C, Qin Y, Chandran C V, Bräuniger T, Hause G, Knez M. Greatly increased toughness of infiltrated spider silk. Science, 2009, 324(5926): 488–492

DOI

25
Yu Y D, He Y, Mu Z, Zhao Y Q, Kong K R, Liu Z M, Tang R K. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness. Advanced Functional Materials, 2020, 30(6): 1908556

DOI

26
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414): 133–136

DOI

27
Ducrot E, Chen Y L, Bulters M, Sijbesma R P, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science, 2014, 344(6180): 186–189

DOI

28
Filippidi E, Cristiani T R, Eisenbach C D, Waite J H, Israelachvili J N, Ahn B K, Valentine M T. Toughening elastomers using musselinspired iron-catechol complexes. Science, 2017, 358(6362): 502–505

DOI

29
Zhang X, Liu W F, Yang D J, Qiu X Q. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Advanced Functional Materials, 2019, 29(4): 1806912

DOI

30
Wang H X, Liu W F, Huang J H, Yang D J, Qiu X Q. Bioinspired engineering towards tailoring advanced lignin/rubber elastomers. Polymers, 2018, 10(9): 1033

DOI

31
Fischer E K, Paglialonga L, Czech E, Tamminga M. Microplastic pollution in lakes and lake shoreline sediments—a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution, 2016, 213: 648–657

DOI

32
Ribeiro C, Costa C M, Correia D M, Nunes-Pereira J, Oliveira J, Martins P, Gonçalves R, Cardoso V F, Lanceros-Méndez S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13(4): 681–704

DOI

33
Aslam M, Kalyar M A, Raza Z A. Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering and Science, 2018, 58(12): 2119–2132

DOI

34
Song P A, Xu Z G, Guo Q P. Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly. ACS Macro Letters, 2013, 2(10): 1100–1104

DOI

35
Zhou P, Luo Y Y, Lv Z, Sun X W, Tian Y Q, Zhang X X. Melt-processed poly(vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties. International Journal of Biological Macromolecules, 2021, 183: 1903–1910

DOI

36
Norgren M, Edlund H. Lignin: recent advances and emerging applications. Current Opinion in Colloid & Interface Science, 2014, 19(5): 409–416

DOI

37
Zhang X, Liu W F, Sun D T, Huang J H, Qiu X Q, Li Z X, Wu X X. Very strong, super-tough, antibacterial, and biodegradable polymeric materials with excellent UV-blocking performance. ChemSusChem, 2020, 13(18): 4974–4984

DOI

38
Zhang X, Liu W F, Liu W Q, Qiu X Q. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties. International Journal of Biological Macromolecules, 2020, 142: 551–558

DOI

39
Duval A, Lawoko M. A review on lignin-based polymeric, micro- and nano-structured materials. Reactive & Functional Polymers, 2014, 85: 78–96

DOI

40
Karasek L, Sumita M. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. Journal of Materials Science, 1996, 31(2): 281–289

DOI

41
Fan Y R, Fowler G D, Zhao M. The past, present and future of carbon black as a rubber reinforcing filler—a review. Journal of Cleaner Production, 2020, 247: 119115

DOI

42
Praveen S, Chattopadhyay P K, Albert P, Dalvi V G, Chakraborty B C, Chattopadhyay S. Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 309–316

DOI

43
Fu Y, Zhao D T, Yao P J, Wang W C, Zhang L Q, Lvov Y. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8156–8165

DOI

44
Gomes F O, Rocha M R, Alves A, Ratola N. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. Journal of Hazardous Materials, 2021, 409: 124998

DOI

45
Keilen J J, Pollak A. Lignin for reinforcing rubber. Industrial & Engineering Chemistry, 1947, 39(4): 480–483

DOI

46
Mohamad Aini N A, Othman N, Hussin M H, Sahakaro K, Hayeemasae N. Lignin as alternative reinforcing filler in the rubber industry: a review. Frontiers in Materials, 2020, 6: 329

DOI

47
Barana D, Orlandi M, Zoia L, Castellani L, Hanel T, Bolck C, Gosselink R. Lignin based functional additives for natural rubber. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11843–11852

DOI

48
Roy K, Debnath S C, Potiyaraj P. A review on recent trends and future prospects of lignin based green rubber composites. Journal of Polymers and the Environment, 2020, 28(2): 367–387

DOI

49
Wang H X, Liu W F, Tu Z K, Huang J H, Qiu X Q. Lignin-reinforced nitrile rubber/poly(vinyl chloride) composites via metal coordination interactions. Industrial & Engineering Chemistry Research, 2019, 58(51): 23114–23123

DOI

50
Xiao L F, Liu W F, Huang J H, Lou H M, Qiu X Q. Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Industrial & Engineering Chemistry Research, 2021, 60(1): 790–797

DOI

51
Huang J H, Liu W F, Qiu X Q. High performance thermoplastic elastomers with biomass lignin as plastic phase. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6550–6560

DOI

52
Huang J H, Liu W F, Qiu X Q, Tu Z K, Li J X, Lou H M. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites. International Journal of Biological Macromolecules, 2021, 183: 1450–1458

DOI

53
Zhou X X, Guo B C, Zhang L Q, Hu G H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chemical Society Reviews, 2017, 46(20): 6301–6329

DOI

54
Vatankhah-Varnosfaderani M, Keith N A, Cong Y D, Liang H Y, Rosenthal M, Sztucki M, Clair C, Magonov S, Ivanov D A, Dobrynin A V, Sheiko S S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 35(6383): 1509–1513

DOI

55
Tu Z K, Liu W F, Wang J, Qiu X Q, Huang J H, Li J X, Lou H M. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nature Communications, 2021, 12(1): 2916

DOI

56
Li W F, Huang J H, Liu W F, Qiu X Q, Lou H M, Zheng L. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds. Journal of Applied Polymer Science, 2022, 139(27): e52476

DOI

57
Zhao X P, Huang C X, Xiao D M, Wang P, Luo X F, Liu W B, Liu S X, Li J, Li S J, Chen Z J. Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation. ACS Applied Materials & Interfaces, 2021, 13(6): 7600–7607

DOI

58
Wang Z T, Wang M L, Wang X X, Hao Z K, Han S B, Wang T, Zhang H Y. Photothermal-based nanomaterials and photothermal-sensing: an overview. Biosensors & Bioelectronics, 2022, 220: 114883

DOI

59
Zhu L L, Gao M M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343

DOI

60
Gai S L, Yang G X, Yang P P, He F, Lin J, Jin D Y, Xing B G. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today, 2018, 19: 146–187

DOI

61
Amendola V, Pilot R, Frasconi M, Marago O M, Iati M A. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics Condensed Matter, 2017, 29(20): 203002

DOI

62
Zou Y, Chen X F, Yang P, Liang G J, Yang Y, Gu Z P, Li Y W. Regulating the absorption spectrum of polydopamine. Science Advances, 2020, 6(36): eabb4696

DOI

63
Chen J W, Qi J L, He J, Yan Y X, Jiang F, Wang Z K, Zhang Y Q. Biobased composites with high lignin content and excellent mechanical properties toward the ingenious photoresponsive actuator. ACS Applied Materials & Interfaces, 2022, 14(10): 12748–12757

DOI

64
Li J X, Liu W F, Qiu X Q, Zhao X P, Chen Z J, Yan M Z, Fang Z Q, Li Z X, Tu Z K, Huang J H. Lignin: a sustainable photothermal block for smart elastomers. Green Chemistry, 2022, 24(2): 823–836

DOI

65
Tu Z K, Wang J, Liu W F, Chen Z J, Huang J H, Li J X, Lou H M, Qiu X Q. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy. Materials Horizons, 2022, 9(10): 2613–2625

DOI

66
Akindoyo J O, Beg M D H, Ghazali S, Islam M R, Jeyaratnam N, Yuvaraj A R. Polyurethane types, synthesis and applications—a review. RCS Advances, 2016, 6(115): 114453–114482

67
Zia K M, Bhatti H N, Ahmad Bhatti I. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. Reactive & Functional Polymers, 2007, 67(8): 675–692

DOI

68
Alinejad M, Henry C, Nikafshar S, Gondaliya A, Bagheri S, Chen N S, Singh S K, Hodge D B, Nejad M. Lignin-based polyurethanes: opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers, 2019, 11(7): 1202

DOI

69
Gama N V, Ferreira A, Barros-Timmons A. Polyurethane foams: past, present, and future. Materials, 2018, 11(10): 1841

DOI

70
Mahmood N, Yuan Z S, Schmidt J, Xu C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renewable & Sustainable Energy Reviews, 2016, 60: 317–329

DOI

71
Zhang Y, Liao J J, Fang X C, Bai F D, Qiao K, Wang L M. Renewable high-performance polyurethane bioplastics derived from lignin-poly(ε-caprolactone). ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4276–4284

DOI

72
Zhou W P, Chen F G, Zhang H, Wang J. Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. Journal of Wood Chemistry and Technology, 2017, 37(5): 323–333

DOI

73
Santos O S H, Coelho da Silva M, Silva V R, Mussel W N, Yoshida M I. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. Journal of Hazardous Materials, 2017, 324: 406–413

DOI

74
Liu W F, Fang C, Wang S Y, Huang J H, Qiu X Q. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks. Macromolecules, 2019, 52(17): 6474–6484

DOI

75
Cassales A, Ramos L A, Frollini E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. International Journal of Biological Macromolecules, 2020, 145: 28–41

DOI

76
Huang J H, Wang H X, Liu W F, Huang J H, Yang D J, Qiu X Q, Zhao L, Hu F C, Feng Y X. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin. International Journal of Biological Macromolecules, 2023, 225: 1505–1516

DOI

77
Wang H X, Huang J H, Liu W F, Huang J H, Yang D J, Qiu X Q, Zhang J R. Tough and fast light-controlled healable lignin-containing polyurethane elastomers. Macromolecules, 2022, 55(19): 8629–8641

DOI

78
Wang S Y, Liu W F, Yang D J, Qiu X Q. Highly resilient lignin-containing polyurethane foam. Industrial & Engineering Chemistry Research, 2019, 58(1): 496–504

DOI

79
Liu W F, Fang C, Chen F T, Qiu X Q. Strong, reusable, and self-healing lignin-containing polyurea adhesives. ChemSusChem, 2020, 13(17): 4691–4701

DOI

80
Fang C, Liu W F, Qiu X Q. Preparation of polyetheramine-grafted lignin and its application in UV-resistant polyurea coatings. Macromolecular Materials and Engineering, 2019, 304(10): 1900257

DOI

81
Morales A, Labidi J, Gullon P. Impact of the lignin type and source on the characteristics of physical lignin hydrogels. Sustainable Materials and Technologies, 2022, 31: e00369

DOI

82
Ahmed E M. Hydrogel: preparation, characterization, and applications: a review. Journal of Advanced Research, 2015, 6(2): 105–121

DOI

83
Thoniyot P, Tan M J, Karim A A, Young D J, Loh X J. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Advanced Science, 2015, 2(1–2): 1400010

DOI

84
Zhang X, Liu W F, Cai J Q, Huang J H, Qiu X Q. Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. Journal of Materials Chemistry A, 2019, 7(47): 26917–26926

DOI

85
Cai J Q, Zhang X, Liu W F, Huang J H, Qiu X Q. Synthesis of highly conductive hydrogel with high strength and super toughness. Polymer, 2020, 202: 122643

DOI

86
Yan M Z, Cai J Q, Fang Z Q, Wang H, Qiu X Q, Liu W F. Anisotropic muscle-like conductive composite hydrogel reinforced by lignin and cellulose nanofibrils. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 12993–13003

DOI

87
Chen N, Liu W F, Huang J H, Qiu X Q. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. International Journal of Biological Macromolecules, 2020, 146: 9–17

DOI

88
Zeng J, Zhang D Q, Liu W F, Huang J H, Yang D J, Qiu X Q, Li S. Preparation of carboxymethylated lignin-based multifunctional flocculant and its application for copper-containing wastewater. European Polymer Journal, 2022, 164: 10967

DOI

89
Yang H T, Yu B, Xu X D, Bourbigot S, Wang H, Song P A. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry, 2020, 22(7): 2129–2161

DOI

90
Dehne L, Vila Babarro C, Saake B, Schwarz K U. Influence of lignin source and esterification on properties of lignin-polyethylene blends. Industrial Crops and Products, 2016, 86: 320–328

DOI

91
Alexy P, Kosikova B, Podstranska G. The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer, 2000, 41(13): 4901–4908

DOI

92
Wang J Y, Chen W H, Yang D J, Fang Z Q, Liu W F, Xiang T, Qiu X Q. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials. Small, 2022, 18(19): 2200671

DOI

93
Kaschuk J J, Al Haj Y, Rojas O J, Miettunen K, Abitbol T, Vapaavuori J. Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Advanced Materials, 2022, 34(6): 2104473

DOI

94
Dai L, Li Y T, Kong F G, Liu K F, Si C L, Ni Y H. Lignin-based nanoparticles stabilized Pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13497–13504

DOI

95
Alqahtani M S, Alqahtani A, Al-Thabit A, Roni M, Syed R. Novel lignin nanoparticles for oral drug delivery. Journal of Materials Chemistry B, 2019, 7(28): 4461–4473

DOI

96
Han X, Lv Z L, Ran F L, Dai L, Li C Y, Si C L. Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 2021, 176: 78–86

DOI

Outlines

/