REVIEW ARTICLE

Research progress on low dielectric constant modification of cellulose insulating paper for power transformers

  • Wenchang Wei 1 ,
  • Haiqiang Chen 1 ,
  • Junwei Zha 2,3 ,
  • Yiyi Zhang , 1
Expand
  • 1. Guangxi Power Transmission and Distribution Network Lightning Protection Engineering Techndogy Research Center, Guangxi University, Nanning 530004, China
  • 2. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 3. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
yiyizhang@gxu.edu.cn

Received date: 07 Jul 2022

Accepted date: 13 Sep 2022

Published date: 15 Aug 2023

Copyright

2023 Higher Education Press

Abstract

Because of the increase in the transmission voltage levels, the demand for insulation reliability of power transformers has increasingly become critical. Cellulose insulating paper is the main insulating component of power transformers. To improve the insulation level of ultrahigh voltage transformers and reduce their weight and size, reducing the dielectric constant of oil-immersed cellulose insulating paper is highly desired. Cellulose is used to produce power-transformer insulating papers owing to its excellent electrical properties, renewability, biodegradability and abundance. The dielectric constant of a cellulose insulating paper can be effectively reduced by chemical or physical modification. This study presents an overview of the foreign and domestic research status of the use of modification technology to reduce the dielectric constant of cellulose insulating papers. All the mentioned methods are analyzed in this study. Finally, some recommendations for future modified cellulose insulating paper research and applications are proposed. This paper can provide a reference for further research on low dielectric constant cellulose insulating paper in the future.

Cite this article

Wenchang Wei , Haiqiang Chen , Junwei Zha , Yiyi Zhang . Research progress on low dielectric constant modification of cellulose insulating paper for power transformers[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(8) : 991 -1009 . DOI: 10.1007/s11705-022-2259-7

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51977114 and 51867003), Bagui Young Scholars Program (Grant No. 2019AQ16), and China Postdoctoral Science Foundation (2022MD713732).
1
PadmanabanSKhaliliMNasabM AZandMShamimA GKhanB. Determination of power transformers health index using parameters affecting the transformer’s life. Journal of the Institution of Electronics and Telecommunication Engineers, 2022, in press

2
Feng D W, Hao J, Yang L J, Liao R J, Chen X, Li J. Comparison of AC breakdown characteristics on insulation paper (pressboard) immersed by three-element mixed insulation oil and mineral oil. High Voltage, 2020, 5(3): 298–305

DOI

3
Geng C H, Liu J F, Zhang H, Liu C Y, Luo Y W, Zhang Y. Diffusion mechanism of furfural in transformer oil-paper insulation under moisture effect. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(2): 485–492

DOI

4
Zhang E Z, Zheng H B, Zhang C S, Wang J Q, Shi K K, Guo J, Schwarz H, Zhang C H. Aging state assessment of transformer cellulosic paper insulation using multivariate chemical indicators. Cellulose, 2021, 28(4): 2445–2460

DOI

5
Thirumurugan C, Kumbhar G B, Oruganti R. Surface discharge characteristics of different solid–liquid insulation materials in power transformers. IEEE Transactions on Plasma Science, 2019, 47(11): 5013–5022

DOI

6
Hou W, Yang L J, Yang M, Yin F, Huang Y Y, Zheng X L. Static dielectric constant and dielectric loss of cellulose insulation: molecular dynamics simulations. High Voltage, 2021, 6(6): 1051–1060

DOI

7
Tang C, Zhang S, Wang X B, Hao J. Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose, 2018, 25(6): 3619–3633

DOI

8
Rafiq M, Lv Y Z, Li C R. A review on properties, opportunities, and challenges of transformer oil-based nanofluids. Journal of Nanomaterials, 2016, 2016: 8371560

DOI

9
Liu Y X, Song B, Wang L N, Gao J C, Xu R H. Power transformer fault diagnosis based on dissolved gas analysis by correlation coefficient-DBSCAN. Applied Sciences, 2020, 10(13): 4440

DOI

10
Abenojar J, Enciso B, Pantoja M, Velasco F, Martinez M A. Thermal characterization and diffusivity of two mono-component epoxies for transformer insulation. International Journal of Adhesion and Adhesives, 2020, 103: 102726

DOI

11
Rafiq M, Shafique M, Azam A, Ateeq M. The impacts of nanotechnology on the improvement of liquid insulation of transformers: emerging trends and challenges. Journal of Molecular Liquids, 2020, 302: 112482

DOI

12
Christina A J, Salam M A, Rahman Q M, Wen F S, Ang S P, Voon W. Causes of transformer failures and diagnostic methods—a review. Renewable & Sustainable Energy Reviews, 2018, 82(1): 1442–1456

13
Tang C, Chen R, Zhang J Z, Peng X, Chen B H, Zhang L S. A review on the research progress and future development of nano-modified cellulose insulation paper. IET Nanodielectrics, 2021, 5(2): 63–84

DOI

14
Abd-Elhady A M, Abdul-Aleem A A, Izzularab M A. Electrical properties evaluation of double-layer nano-filled oil-paper composites. IET Science, Measurement & Technology, 2020, 15(1): 77–84

DOI

15
Badawi M, Ibrahim S A, Mansour D E A, El-Faraskoury A A, Ward S A, Mahmoud K, Lehtonen M, Darwish M M F. Reliable estimation for health index of transformer oil based on novel combined predictive maintenance techniques. IEEE Access: Practical Innovations, Open Solutions, 2022, 10: 25954–25972

DOI

16
Alshehawy A M, Mansour D E A, Ghali M, Lehtonen M, Darwish M M F. Photoluminescence spectroscopy measurements for effective condition assessment of transformer insulating oil. Processes, 2021, 9(5): 732

DOI

17
Ghoneim S S M, Dessouky S S, Boubakeur A, Elfaraskoury A A, Abou Sharaf A B, Mahmoud K, Lehtonen M, Darwish M M F. Accurate insulating oil breakdown voltage model associated with different barrier effects. Processes, 2021, 9(4): 657

DOI

18
Ward S A, El-Faraskoury A, Badawi M, Ibrahim S A, Mahmoud K, Lehtonen M, Darwish M M F. Towards precise interpretation of oil transformers via novel combined techniques based on DGA and partial discharge sensors. Sensors, 2021, 21(6): 2223

DOI

19
Mansour D E A, Abdel-Gawad N M K, El Dein A Z, Ahmed H M, Darwish M M F, Lehtonen M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials, 2021, 14(1): 66

DOI

20
Zheng H B, Yang E C, Wu S Y, Lv W J, Yang H, Li X F, Luo X Q, Hu W. Investigation on formation mechanisms of carbon oxides during thermal aging of cellulosic insulating paper. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1226–1233

DOI

21
Mao J L, Wang S, Shi Q Y, Cheng Y L, Chen Y. Excellent vacuum pulsed flashover characteristics achieved in dielectric insulators functionalized by electronegative halogen-phenyl and naphthyl groups. Langmuir, 2022, 38(13): 4129–4137

DOI

22
Zhang X, Yang F H, Sun X P, Li W F, Yao Z H. Effects of modified hexagonal boron nitride on electrical insulation properties of LLDPE/EAA nanocomposites. Polymer International, 2022, 71(8): 950–958

DOI

23
Kabir M M, Wang H, Lau K T, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites Part B: Engineering, 2012, 43(7): 2883–2892

DOI

24
Peng L, Fu Q, Li L, Lin M. Indirect detection of DP for insulating paper based on methanol content in transformer oil by spectroscopic approach. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 90–94

DOI

25
Pablo A D, Pahlavanpour B. Furanic compounds analysis: a tool for predictive maintenance of oil filled electrical equipment. Electra, 1997, 175(32): 9–31

26
Huang J W, Zhou Y X, Dong L Y, Zhou Z L, Liu R. Enhancement of mechanical and electrical performances of insulating press paper by introduction of nanocellulose. Composites Science and Technology, 2017, 138: 40–48

DOI

27
Sima W X, He J H, Sun P T, Yang M, Yin Z, Li C. Novel nanostructure composite dielectric with high insulation performance: silica-based nanometer-sized porous composite insulating paper reinforced by ceramic fibers. Scripta Materialia, 2020, 181: 58–61

DOI

28
Chen J Q, Sun P T, Sima W X, Shao Q Q, Ye L, Li C. A promising nano-insulating-oil for industrial application: electrical properties and modification mechanism. Nanomaterials, 2019, 9(5): 788

DOI

29
Zhang J W, Tang C, Qiu Q P, Yang L. Effect of water on the diffusion of small molecular weight acids in nano-SiO2 modified insulating oil. Journal of Molecular Liquids, 2020, 314: 113670

DOI

30
Sharin A G, Nor A M, Zulkarnain A N, Hidayat Z, Norazhar A B, Mohd A T. Methods for improving the workability of natural ester insulating oils in power transformer applications: a review. Electric Power Systems Research, 2018, 163: 655–667

DOI

31
Kamata Y, Ohe E, Endoh K, Furukawa S, Tsukioka H, Maejima M, Fujita H, Nozaki M, Ishizuka F, Hyohdoh K. Development of low-permittivity pressboard and its evaluation for insulation of oil-immersed EHV power transformers. IEEE Transactions on Electrical Insulation, 1991, 26(4): 819–825

DOI

32
Cao Y, Lrwin P C, Younsi K. The future of nano dielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797–807

DOI

33
Tang C, Li X, Yin F, Hao J. The performance improvement of aramid insulation paper by nano-SiO2 modification. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2400–2409

DOI

34
Hou W, Yang L J, Yin F, Mo Y, Liao R J, Yuan Y. Preparation of a novel cellulose insulation with network structure by citric acid crosslinking. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1171–1180

DOI

35
Shen Y, Lin Y H, Nan C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Advanced Functional Materials, 2007, 17(14): 2405–2410

DOI

36
Nie S X, Cai C C, Lin X J, Zhang C Y, Lu Y X, Mo J L, Wang S F. Chemically functionalized cellulose nanofibrils for improving triboelectric charge density of a triboelectric nanogenerator. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18678–18685

DOI

37
Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X. Enhancement of triboelectric charge density by chemical functionalization. Advanced Functional Materials, 2020, 30(50): 2004714

DOI

38
Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy, 2021, 89: 106369

DOI

39
Zhang S, Chi M C, Mo J L, Liu T, Liu Y H, Fu Q, Wang J L, Luo B, Qin Y, Wang S F, Nie S X. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nature Communications, 2022, 13(1): 4168

DOI

40
Ge W J, Shuai J B, Wang Y Y, Zhou Y X, Wang X H. Progress on chemical modification of cellulose in “green” solvents. Polymer Chemistry, 2022, 13(3): 359–372

DOI

41
Jennie B, Saina K, Danila M C, Martin L, Jakob W, Gunnar H, Mikael E L, Lars W, Francisco V. Acetylation and sugar composition influence the (in) solubility of plant β-mannans and their interaction with cellulose surfaces. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10027–10040

DOI

42
Amaury L, Richard D, Balázs T, Daniel M, Rachida Z. Alkylation of microfibrillated cellulose—a green and efficient method for use in fiber-reinforced composites. Polymer, 2017, 126: 48–55

DOI

43
Melissa B A, Fumiaki N, Hiroyuki Y. Improving the thermal stability of wood-based cellulose by esterification. Carbohydrate Polymers, 2018, 192: 28–36

DOI

44
Li X L. Surface Charge Accumulation and breakdown mechanism of oil-impregnated paper in valve side bushing of UHV converter transformer. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2017, 39–99

45
Mo Y, Yang L J, Hou W, Zou T T, Huang Y Y, Zheng X L, Liao R J. Preparation of cellulose insulating paper of low dielectric constant by OAPS grafting. Cellulose, 2019, 26(12): 7451–7468

DOI

46
Mo Y, Yang L J, Hou W, Zou T T, Huang Y Y, Liao R J. Preparation of cellulose insulating paper with low dielectric constant by BTCA esterification crosslinking. Macromolecular Materials and Engineering, 2020, 305(6): 2000063

DOI

47
PrevostT A. Thermally upgraded insulation in transformers. In: IEEE Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo. New York: IEEE, 2005: 120–125

48
Beavers M F, Raab E L, Raab L, Lesile J C. Permalex, a new insulation system. Power Apparatus and Systems Part III: Transactions of the American Institute of Electrical Engineers, 1960, 79(3): 64–70

49
Prevost T A, Oommen T V. Cellulose insulation in oil-filled power transformers: part I—history and development. IEEE Electrical Insulation Magazine, 2006, 22(1): 28–35

DOI

50
Morrison E L. Evaluation of the thermal stability of electrical insulating paper. IEEE Transactions on Electrical Insulation, 1968, EI-3(3): 76–82

DOI

51
Kilzer F J, Broido A. Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 1965, 2: 151–163

52
Raftopoulos K N, Pielichowski K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–187

DOI

53
Ramesh S, Kim J, Kim J H. Characteristic of hybrid cellulose-amino functionalized POSS-silica nanocomposite and antimicrobial activity. Journal of Nanomaterials, 2015, 70: 1–9

DOI

54
Song Z, Tang C, Xie J Y, Zhou Q. Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting. Applied Physics Letters, 2016, 109(17): 172902

DOI

55
Barreto A C H, Costa M M, Sombra A S B, Rosa D S, Nascimento R F, Mazzetto S E, Fechine P B A. Chemically modified banana fiber: structure, dielectrical properties and biodegradability. Journal of Polymers and the Environment, 2010, 18(4): 523–531

DOI

56
Einfeldt J, Meiner D, Kwasniewski A. Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Progress in Polymer Science, 2001, 26(9): 1419–1472

DOI

57
Hu J, Zhang S F, Tang B T. 2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Materials, 2021, 34: 260–281

DOI

58
Jang M, Park S Y, Kim S K, Jung D, Song W, Myung S, Lee S S, Yoon D H, An K S. Strategic customization of polymeric nanocomposites modified by 2D titanium oxide nanosheet for high-k and flexible gate dielectrics. Small, 2021, 17(17): 2007213

DOI

59
Cai J M, Pan J L, Li X P, Tan J W, Li J B. Electrical resistivity of fly ash and metakaolin based geopolymers. Construction & Building Materials, 2020, 234: 117868

DOI

60
Cai C C, Luo B, Liu Y H, Fu Q, Liu T, Wang S F, Nie S X. Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52: 299–326

DOI

61
Cheng S, Zhou Y, Li Y S, Yuan C, Fu J, Hu J, He J L, Li Q. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Materials, 2021, 42: 445–453

DOI

62
Shen Y, Zhang X, Li M, Lin Y H, Nan C W. Polymer nanocomposite dielectrics for electrical energy storage. National Science Review, 2017, 4(1): 23–25

DOI

63
Zhao J M, Zhang W L, Liu T, Liu Y H, Qin Y, Mo J L, Cai C C, Zhang S, Nie S X. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664

DOI

64
Cai C C, Mo J L, Lu Y X, Zhang N, Wu Z Y, Wang S F, Nie S X. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 2021, 83: 105833

DOI

65
Zhang C Y, Mo J L, Fu Q, Liu Y H, Wang S F, Nie S X. Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81: 105637

DOI

66
Ji S Y, Jung H B, Kim M K, Lim J Y, Ryu J, Jeong D Y. Enhanced energy storage performance of polymer/ceramic/metal composites by increase of thermal conductivity and coulomb-blockade effect. ACS Applied Materials & Interfaces, 2021, 13(23): 27343–27352

DOI

67
Feng Q K, Dong Q, Zhang D L, Pei J Y, Dang Z M. Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets. Composites Science and Technology, 2022, 218: 109193

DOI

68
Lu Y X, Tao P, Zhang N, Nie S X. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicellulose contents. Carbohydrate Polymers, 2020, 245: 116463

DOI

69
Kwon N K, Kim H, Han I K, Shin T J, Lee H W, Park J, Kim S Y. Enhanced mechanical properties of polymer nanocomposites using dopamine-modified polymers at nanoparticle surfaces in very low molecular weight polymers. ACS Macro Letters, 2018, 7(8): 962–967

DOI

70
Fereidoon A, Aleaghaee S, Taraghi I. Mechanical properties of hybrid graphene/TiO2 (rutile) nanocomposite: a molecular dynamics simulation. Computational Materials Science, 2015, 102: 220–227

DOI

71
Qin Y, Mo Ji L, Liu Y H, Zhang S, Wang J L, Fu Q, Wang S F, Nie S X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Advanced Functional Materials, 2022, 32(27): 2201846

DOI

72
Chen Q G, Yang H D, Wang X Y, Liu H Q, Zhou K, Ning X. Dielectric properties of epoxy resin impregnated nano-SiO2 modified insulating paper. Polymers, 2019, 11(3): 393

DOI

73
Tanaka T, Montanari G C, Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future application. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 763–784

DOI

74
Mo Y, Yang L Y, Zou T T, Hou W, Liao R J. Preparation of composite insulating paper with decreased permittivity, good mechanical and thermal properties by Kevlar/nano cellulose fibrils/softwood pulp hybrid. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 104258–104268

DOI

75
Chen Q G, Liu H Q, Zhuge X L, Wei X L. Analysis of dielectric properties and electric field homogenization of modified insulation pressboard based on nano SiC. Electric Machines and Control, 2014, 18(12): 79–84+94

76
Yan S Q, Liao R J, Lv Y D, Zhao X T, Yuan Y, He L H. Influence of nano-Al2O3 on electrical properties of insulation paper under thermal aging. Transactions of China Electrotechnical Society, 2017, 32(11): 225–232

77
Liao R J, Lv C, Wu W Q, Liang N C, Yang L J. Insulating properties of insulation paper modified by nano-Al2O3 for power transformer. Journal of Electric Power Science and Technology, 2014, 29(01): 3–7

78
Liao R J, Lv C, Wu W Q, Liu T, Liu H B. Insulating property of insulation paper modified by nano-TiO2. High Voltage Engineering, 2014, 40(07): 1932–1939

79
Liao R J, Lv C, Yang L J, Zhang Y Y, Wu W Q, Tang C. The insulation properties of oil-impregnated insulation paper reinforced with nano-TiO2. Journal of Nanomaterials, 2013, 7: 373959

DOI

80
Zhang F Z, Liao R J, Yuan Y, Li Y S, Peng Q J, Liu T. Preparation for low-permittivity insulation paper and its breakdown performance. High Voltage Engineering, 2012, 38(03): 691–696

81
Yuan Y, Liao R J. A novel nanomodified cellulose insulation paper for power transformer. Journal of Nanomaterials, 2014, 2014: 510864

DOI

82
Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 2010, 110(6): 3479–3500

DOI

83
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994

DOI

84
Sehaqui H, Allais M, Zhou Q, Berglund L A. Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71(3): 382–387

DOI

85
Huang X, Zhou Y X, Gesang Q Z, Zhang L, Zhang Y X, Teng C Y, Huang M. Construction of nanocellulose sandwich-structured insulating paper and its enhancement for mechanical and electrical properties. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1127–1135

DOI

86
Yuan Y, Lin B P, Sun Y M. Novel low-dielec tric-constant copolyimide thin fims composed with SiO2 hollowspheres. Journal of Applied Polymer Science, 2010, 120(2): 1133–1137

DOI

87
Bongicivanni R, Mazza D, Ronchetti S, Turcato E A. The influence of water on the intercalation of epoxy monomers in Na-montmorillonite. Journal of Colloid and Interface Science, 2006, 296(2): 515–519

DOI

88
Dong Y, Bhattacharyya D. Dual role of maleated polypropylene in processing and material characterization of polypropylene/clay nanocomposites. Materials Science and Engineering A, 2010, 527(6): 1617–1622

DOI

89
Zhang Q, Wang K, Men Y, Fu Q. Dispersion and tensile behavior of polypropylene/montmorillonite nanocomposites produced via melt intercalation. Chinese Journal of Polymer Science, 2003, 21(3): 359–367

90
Yin H J, Gao G Q, Yang Y, Liu K, Wu G N. A ReaxFF molecular dynamics study of insulation paper modification by plasma ROS. Physics of Plasmas, 2022, 29(3): 033508

DOI

91
Liu C, Hao J, Li Y Q, Liao R J. Fabrication of ZnO-Al2O3-PTFE multilayer nano-structured functional film on cellulose insulation polymer surface and its effect on moisture inhibition and dielectric properties. Polymers, 2019, 11(8): 1367

DOI

92
Wu S L, Zhang C, Zhang C S, Yu W X, Yang Q, Shao T. Nano-sized composite improving the insulating performance of insulating paper using low-temperature plasmas. Nanotechnology, 2021, 32(18): 185704

DOI

93
Chen Q J, Kang M C, Xie Q H, Wang J H. Effect of melamine modified cellulose nanocrystals on the performance of oil-immersed transformer insulation paper. Cellulose, 2020, 27(13): 7621–7636

DOI

94
Tu Y P, He J, Wang Q, Liu M, Xu G L, Ding L J. Measurement of thermally stimulated current in ZnO varistor. Proceedings of the CSEE, 2010, 30(33): 116–121 (in Chinese)

95
Yang H D, Chen Q G, Wang X Y, Chi M H, Liu H Q, Ning X. Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers, 2019, 11(8): 1359

DOI

96
Rafiq M, Li C R, Lv Y Z. Effect of Al2O3 nanorods on dielectric strength of aged transformer oil/paper insulation system. Journal of Molecular Liquids, 2019, 284: 700–708

DOI

97
Cheng L, Jiang Y F, Dan M L, Wen H, Li Y Q, Qin W, Hao J. Effects of fiber and copper particles on conductivity and breakdown characteristics of natural ester and mineral oil under DC voltage. Energies, 2020, 13(7): 1818

DOI

98
Liu H Z, Zhang G F, Lu L L, Chen Y X, Luo M T, Bian J M, Wang Z F, Wang L J. Influence of varied fluorine contents on long-term storage stability of polyacrylate nanoparticles and film properties. Journal of Nanomaterials, 2019, 2019: 2970819

DOI

99
Xu L, Liang H W, Yang Y, Yu S H. Stability and reactivity: positive and negative aspects for nanoparticle processing. Chemical Reviews, 2018, 118(7): 3209–3250

DOI

100
Liu J, Fan X, Zheng H, Zhang Y, Zhang C, Lai B, Wang J, Ren G, Zhang E. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose, 2019, 26(6): 3891–3908

DOI

101
Yang M, Yang L J, Yin F, Gao Y Y, Liao R J. Polarity, thermal stability, and hydrophilicity of three-layer crosslinked PPTA/cellulose composite insulation system: molecular dynamics simulations. Materials Today Communications, 2022, 31: 103533

DOI

102
Wei S K, Wu X L, Li X. Solubility analysis of nano particles, cellulose crystalline region and cellulose molecule, and the impact study of crystalline region on properties of cellulose insulating paper. Molecular Simulation, 2021, 47(18): 1522–1529

DOI

103
Kong Y, Li L B, Fu S Y. Insights from molecular dynamics simulations for interaction between cellulose microfibrils and hemicellulose. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2022, 10(27): 14451–14459

DOI

104
Du D Y, Tang C, Tang Y J, Yang L, Hao J. Molecular simulation on the mechanical and thermal properties of carbon nanowire modified cellulose insulating paper. Composite Structures, 2021, 261: 113283

DOI

105
Zhang Z X, Zhou H B, Li W T, Tang C. Molecular simulation of improved mechanical properties and thermal stability of insulation paper cellulose by modification with silane-coupling-agent-grafted nano-SiO2. Processes, 2021, 9(5): 766

DOI

106
Zhang Y Y, Li Y, Zheng H B, Zhu M Z, Liu J F, Yang T, Zhang C H, Li Y. Microscopic reaction mechanism of the production of methanol during the thermal aging of cellulosic insulating paper. Cellulose, 2020, 27(5): 2455–2467

DOI

107
Yang M, Yang L J, Yin F, Gao Y Y, Liao R J. Development of PPTA/cellulose three-layer composite insulating paper with low dielectric constant and good mechanical strength based on molecular dynamics simulation. Polymer Composites, 2022, 43(3): 1698–1710

DOI

Outlines

/