REVIEW ARTICLE

Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment

  • Xizi Xu 1 ,
  • He Lv 1 ,
  • Mingxin Zhang 1 ,
  • Menglong Wang 1 ,
  • Yangjian Zhou 1 ,
  • Yanan Liu , 1 ,
  • Deng-Guang Yu , 1,2
Expand
  • 1. School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2. Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
yananliu@usst.edu.cn
ydg017@usst.edu.cn

Received date: 15 Jun 2022

Accepted date: 27 Aug 2022

Published date: 15 Mar 2023

Copyright

2022 Higher Education Press

Abstract

Novel adsorbents with a simple preparation process and large capacity for removing highly toxic and nondegradable heavy metals from water have drawn the attention of researchers. Electrospun nanofiber membranes usually have the advantages of large specific surface areas and high porosity and allowing flexible control and easy functionalization. These membranes show remarkable application potential in the field of heavy metal wastewater treatment. In this paper, the electrospinning technologies, process types, and the structures and types of nanofibers that can be prepared are reviewed, and the relationships among process, structure and properties are discussed. On one hand, based on the different components of electrospun nanofibers, the use of organic, inorganic and organic−inorganic nanofiber membrane adsorbents in heavy metal wastewater treatment are introduced, and their advantages and future development are summarized and prospected. On the other hand, based on the microstructure and overall structure of the nanofiber membrane, the recent progresses of electrospun functional membranes for heavy metal removal are reviewed, and the advantages of different structures for applications are concluded. Overall, this study lays the foundation for future research aiming to provide more novel structured adsorbents.

Cite this article

Xizi Xu , He Lv , Mingxin Zhang , Menglong Wang , Yangjian Zhou , Yanan Liu , Deng-Guang Yu . Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(3) : 249 -275 . DOI: 10.1007/s11705-022-2245-0

Acknowledgement

This work is financially supported by the Natural Science Foundation of Shanghai (Grant No. 20ZR1439000).
1
Malik L A, Bashir A, Qureashi A, Pandith A H. Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 2019, 17(4): 1495–1521

DOI

2
Chai W S, Cheun J Y, Kumar P S, Mubashir M, Majeed Z, Banat F, Ho S H, Show P L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 2021, 296: 126589

DOI

3
Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X. Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environmental Pollution, 2019, 246: 608–620

DOI

4
Sabzehmeidani M M, Mahnaee S, Ghaedi M, Heidari H, Roy V A L. Carbon based materials: a review of adsorbents for inorganic and organic compounds. Materials Advances, 2021, 2(2): 598–627

DOI

5
Chakraborty R, Asthana A, Singh A K, Jain B, Susan A B H. Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 2022, 102(2): 342–379

DOI

6
Zhang L, He G, Yu Y, Zhang Y, Li X, Wang S. Design of biocompatible chitosan/polyaniline/laponite hydrogel with photothermal conversion capability. Biomolecules, 2022, 12(8): 1089

DOI

7
Zhang Y, Wang B, Cheng Q, Li X, Li Z. Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: a review. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7231–7254

DOI

8
Makvandi P, Iftekhar S, Pizzetti F, Zarepour A, Zare E N, Ashrafizadeh M, Agarwal T, Padil V V T, Mohammadinejad R, Sillanpaa M, Maiti T K, Perale G, Zarrabi A, Rossi F. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19(1): 583–611

DOI

9
Shayegan H, Ali G A M, Safarifard V. Recent progress in the removal of heavy metal ions from water using metal–organic frameworks. ChemistrySelect, 2020, 5(1): 124–146

DOI

10
Liu Y N, Lv H, Liu Y, Gao Y M, Kim H Y, Ouyang Y, Yu D G. Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications. Materials Today. Chemistry, 2022, 25: 123608

DOI

11
Wadhawan S, Jain A, Nayyar J, Mehta S K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. Journal of Water Process Engineering, 2020, 33: 101038

DOI

12
Pereao O, Bode-Aluko C, Laatikainen K, Nechaev A, Petrik L. Morphology, modification and characterisation of electrospun polymer nanofiber adsorbent material used in metal ion removal. Journal of Polymers and the Environment, 2019, 27(9): 1843–1860

DOI

13
Feng L, Li S H, Zhai J, Song Y L, Jiang L, Zhu D B. Template based synthesis of aligned polyacrylonitrile nanofibers using a novel extrusion method. Synthetic Metals, 2003, 135(1-3): 817–818

DOI

14
Ichimori T, Mizuma K, Uchida T, Yamazaki S, Kimura K. Morphological diversity and nanofiber networks of poly(p-oxybenzoyl) generated by phase separation during copolymerization. Journal of Applied Polymer Science, 2013, 128(2): 1282–1290

DOI

15
Hwang W, Kim B H, Dandu R, Cappello J, Ghandehari H, Seog J. Surface induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer. Langmuir, 2009, 25(21): 12682–12686

DOI

16
Chen H, Lin J, Zhang N, Chen L, Zhong S, Wang Y, Zhang W, Ling Q. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater. Journal of Hazardous Materials, 2018, 345: 1–9

DOI

17
Cui J, Li F, Wang Y, Zhang Q, Ma W, Huang C. Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 2020, 250: 117116

DOI

18
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chemical Reviews, 2019, 119(8): 5298–5415

DOI

19
Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim H Y. Electrospun nanofibers: new generation materials for advanced applications. Materials Science and Engineering B, 2017, 217: 36–48

DOI

20
Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H, Zhang J, Ding J. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules, 2019, 24(5): 834

DOI

21
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 479–502

DOI

22
Liu M, Duan X P, Li Y M, Yang D P, Long Y Z. Electrospun nanofibers for wound healing. Materials Science & Engineering. Materials Science and Engineering C, 2017, 76: 1413–1423

DOI

23
Li H, Chen X, Lu W, Wang J, Xu Y, Guo Y. Application of electrospinning in antibacterial field. Nanomaterials, 2021, 11(7): 1822

DOI

24
Pant B, Park M, Park S J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics, 2019, 11(7): 305

DOI

25
Wu T, Ding M, Shi C, Qiao Y, Wang P, Qiao R, Wang X, Zhong J. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering. Chinese Chemical Letters, 2020, 31(3): 617–625

DOI

26
Guo H, Chen Y, Li Y, Zhou W, Xu W, Pang L, Fan X, Jiang S. Electrospun fibrous materials and their applications for electromagnetic interference shielding: a review. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106309

DOI

27
Xu L, Liu Y A, Zhou W H, Yu D G. Electrospun medical sutures for wound healing: a review. Polymers, 2022, 14(9): 1637

DOI

28
Zhang Y, Song W L, Lu Y M, Xu Y X, Wang C P, Yu D G, Kim I. Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules, 2022, 12(5): 636

DOI

29
Kang S X, Hou S C, Chen X W, Yu D G, Wang L, Li X Y, Williams R G. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers, 2020, 12(10): 2421

DOI

30
Zhang X, Guo S, Qin Y, Li C. Functional electrospun nanocomposites for efficient oxygen reduction reaction. Chemical Research in Chinese Universities, 2021, 37(3): 379–393

DOI

31
Li X X, He J H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: The formation mechanism of nanofiber membrane in the electrospinning. Results in Physics, 2019, 12: 1405–1410

DOI

32
Liu W, Xi G, Yang X, Hao X, Wang M, Feng Y, Chen H, Shi C. Poly(lactide-co-glycolide) grafted hyaluronic acid-based electrospun fibrous hemostatic fragments as a sustainable anti-infection and immunoregulation material. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(32): 4997–5010

DOI

33
Liu Y, Chen X, Gao Y, Liu Y, Yu D, Liu P. Electrospun core-sheath nanofibers with variable shell thickness for modifying curcumin release to achieve a better antibacterial performance. Biomolecules, 2022, 12(8): 1057

DOI

34
Sivan M, Madheswaran D, Valtera J, Kostakova E K, Lukas D. Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Materials & Design, 2022, 213: 110308

DOI

35
Ghazalian M, Afshar S, Rostami A, Rashedi S, Bahrami S H. Fabrication and characterization of chitosan-polycaprolactone core–shell nanofibers containing tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128163

DOI

36
Zhou Y J, Liu Y A, Zhang M X, Feng Z B, Yu D G, Wang K. Electrospun nanofiber membranes for air filtration: a review. Nanomaterials, 2022, 12(7): 1077

DOI

37
Zaarour B, Zhu L, Jin X. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 2019, 17(2): 181–189

DOI

38
Ibrahim H M, Klingner A. A review on electrospun polymeric nanofibers: production parameters and potential applications. Polymer Testing, 2020, 90: 106647

DOI

39
Dodero A, Brunengo E, Alloisio M, Sionkowska A, Vicini S, Castellano M. Chitosan-based electrospun membranes: effects of solution viscosity, coagulant and crosslinker. Carbohydrate Polymers, 2020, 235: 115976

DOI

40
Chen W, Zhao P, Yang Y, Yu D G. Electrospun beads-on-the-string nanoproducts: preparation and drug delivery application. Current Drug Delivery, 2022, 19

DOI

41
Han Y Y, Xia L, Zhuang X P, Liang Y X. Integrating of metal–organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption of dye rose bengal. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1387–1398

DOI

42
Topuz F, Satilmis B, Uyar T. Electrospinning of uniform nanofibers of polymers of intrinsic microporosity (PIM-1): the influence of solution conductivity and relative humidity. Polymer, 2019, 178: 121610

DOI

43
Steyaert I, Van der Schueren L, Rahier H, de Clerck K. An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromolecular Symposia, 2012, 321(1): 71–75

DOI

44
Najafi S J, Nosraty H, Shokrieh M M, Gharehaghaji A A, Bahrami S H. The effect of electrospinning parameters on the morphology of glass nanofibers. Journal of the Textile Institute, 2020, 111(7): 941–949

DOI

45
Vicente A C B, Medeiros G B, Vieira D D, Garcia F P, Nakamura C V, Muniz E C, Corradini E. Influence of process variables on the yield and diameter of zein-poly(N-isopropylacrylamide) fiber blends obtained by electrospinning. Journal of Molecular Liquids, 2019, 292: 109971

DOI

46
Topuz F, Uyar T. Electrospinning of cyclodextrin nanofibers: the effect of process parameters. Journal of Nanomaterials, 2020, 2020: 7529306

DOI

47
Huang F, Wei Q, Wang J, Cai Y, Huang Y. Effect of temperature on structure, morphology and crystallinity of PVDF nanofibers via electrospinning. E-Polymers, 2008, 8(1): 152

DOI

48
Bachs-Herrera A, Yousefzade O, del Valle L J, Puiggali J. Melt electrospinning of polymers: blends, nanocomposites, additives and applications. Applied Sciences, 2021, 11(4): 1808

DOI

49
Arrieta M P, Leones Gil A, Yusef M, Kenny J M, Peponi L. Electrospinning of PCL-based blends: processing optimization for their scalable production. Materials, 2020, 13(17): 3853

DOI

50
Zheng Y, Cao H, Zhou Z, Mei X, Yu L, Chen X, He G, Zhao Y, Wu D, Sun D. Concentrated multi-nozzle electrospinning. Fibers and Polymers, 2019, 20(6): 1180–1186

DOI

51
Wu C, Zhang H, Hu Q, Ramalingam M. Designing biomimetic triple-layered nanofibrous vascular grafts via combinatorial electrospinning approach. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6396–6405

DOI

52
Yu D G, Wang M L, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2022, 14(3): e1772

DOI

53
Liu Y B, Chen X H, Gao Y H, Yu D G, Liu P. Elaborate design of shell component for manipulating the sustained release behavior from core–shell nanofibres. Journal of Nanobiotechnology, 2022, 20(1): 244

DOI

54
He H, Wu M, Zhu J W, Yang Y Y, Ge R L, Yu D G. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Advanced Fiber Materials, 2022, 4(2): 305–317

DOI

55
Jiang W, Zhao P, Song W, Wang M, Yu D G. Electrospun zein/polyoxyethylene core-sheath ultrathin fibers and their antibacterial food packaging applications. Biomolecules, 2022, 12(8): 1110

DOI

56
Xu H X, Zhang F Y, Wang M L, Lv H, Yu D G, Liu X K, Shen H. Electrospun hierarchical structural films for effective wound healing. Biomaterials Advances, 2022, 212795

57
Wang M L, Hou J S, Yu D G, Li S Y, Zhu J W, Chen Z Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. Journal of Alloys and Compounds, 2020, 846: 156471

DOI

58
Xu H, Xu X, Li S, Song W L, Yu D G, Annie Bligh S W. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules, 2021, 11(9): 1330

DOI

59
Ji Y, Song W L, Xu L, Yu D G, Annie-Bligh S W. A review on electrospun poly(amino acid) nano-fibers and their applications of hemostasis and wound healing. Biomolecules, 2022, 12(6): 794

DOI

60
Yu D G, Lv H. Preface-striding into nano drug delivery. Current Drug Delivery, 2022, 19(1): 1–3

DOI

61
Guo S R, Jiang W L, Shen L F, Zhang G Y, Gao Y M, Yang Y Y, Yu D G. Electrospun hybrid films for fast and convenient delivery of active herb extracts. Membranes, 2022, 12(4): 398

DOI

62
Lv H, Guo S R, Zhang G Y, He W L, Wu Y H, Yu D G. Electrospun structural hybrids of acyclovir-polyacrylonitrile at acyclovir for modifying drug release. Polymers, 2021, 13(24): 4286

DOI

63
Liu X, Zhang M X, Song W L, Zhang Y, Yu D G, Liu Y. Electrospun core (HPMC-acetaminophen)-shell (PVP-sucralose) nanohybrids for rapid drug delivery. Gels, 2022, 8(6): 357

DOI

64
Wang M L, Yu D G, Williams G R, Bligh S W A. Co-loading of inorganic nanoparticles and natural oil in the electrospun Janus nanofibers for a synergetic antibacterial effect. Pharmaceutics, 2022, 14(6): 1208

DOI

65
Liu H, Wang H, Lu X, Murugadoss V, Huang M, Yang H, Wan F, Yu D G, Guo Z. Electrospun structural nanohybrids combining three composites for fast helicide delivery. Advanced Composites and Hybrid Materials, 2022, 5(2): 1017–1029

DOI

66
Liu H, Jiang W, Yang Z, Chen X, Yu D G, Shao J. Hybrid films prepared from a combination of electrospinning and casting for offering a dual-phase drug release. Polymers, 2022, 14(11): 2132

DOI

67
He T S, Yu X D, Bai T J, Li X Y, Fu Y R, Cai K D. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics, 2020, 26(8): 4103–4111

DOI

68
Xue Y, Guo X, Zhou H, Zhou J. Influence of beads-on-string on Na-ion storage behavior in electrospun carbon nanofibers. Carbon, 2019, 154: 219–229

DOI

69
Kim B G, Kang D W, Park G, Park S H, Lee S M, Choi J W. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422: 130017

DOI

70
Ji X, Li R, Liu G, Jia W, Sun M, Liu Y, Luo Y, Cheng Z. Phase separation-based electrospun Janus nanofibers loaded with Rana chensinensis skin peptides/silver nanoparticles for wound healing. Materials & Design, 2021, 207: 109864

DOI

71
Agrawal S, Ranjan R, Lal B, Rahman A, Singh S P, Selvaratnam T, Nawaz T. Synthesis and water treatment applications of nanofibers by electrospinning. Processes, 2021, 9(10): 1779

DOI

72
Sahoo S K, Panigrahi G K, Sahoo J K, Pradhan A K, Purohit A K, Dhal J P. Electrospun magnetic polyacrylonitrile-GO hybrid nanofibers for removing Cr(VI) from water. Journal of Molecular Liquids, 2021, 326: 115364

DOI

73
Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A. Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 2016, 306: 1116–1137

DOI

74
Ma H, Hsiao B S, Chu B. Electrospun nanofibrous membrane for heavy metal ion adsorption. Current Organic Chemistry, 2013, 17(13): 1361–1370

DOI

75
Kayan G O, Kayan A. Composite of natural polymers and their adsorbent properties on the dyes and heavy metal ions. Journal of Polymers and the Environment, 2021, 29(11): 3477–3496

DOI

76
Ibrahim H, Sazali N, Salleh W N W, Ismail A F. Nanocellulose-based materials and recent application for heavy metal removal. Water, Air, and Soil Pollution, 2021, 232(7): 305

DOI

77
Zhou J, Fang Z, Tian Q, Zhao S, Jiang Y. Removal of heavy metal ions by porous sepiolite-based membrane. Micro & Nano Letters, 2020, 15(13): 903–906

DOI

78
Li J, Yang Z L, Ding T, Song Y J, Li H C, Li D Q, Chen S, Xu F. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes. Carbohydrate Polymers, 2022, 276: 118789

DOI

79
Lofrano G, Carotenuto M, Libralato G, Domingos R F, Markus A, Dini L, Gautam R K, Baldantoni D, Rossi M, Sharma S K, Chattopadhyaya M C, Giugni M, Meric S. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Research, 2016, 92: 22–37

DOI

80
Manyangadze M, Chikuruwo N H M, Narsaiah T B, Chakra C S, Radhakumari M, Danha G. Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. South African Journal of Chemical Engineering, 2020, 31: 25–32

DOI

81
Nasir A M, Goh P S, Abdullah M S, Ng B C, Ismail A F. Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere, 2019, 232: 96–112

DOI

82
Li F, Chen C, Wang Y, Li W, Zhou G, Zhang H, Zhang J, Wang J. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater. Frontiers of Chemical Science and Engineering, 2021, 15(4): 984–997

DOI

83
Sun W J, Mao J L, Wang S, Zhang L, Cheng Y H. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15(1): 18–34

DOI

84
Choi H Y, Bae J H, Hasegawa Y, An S, Kim I S, Lee H, Kim M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydrate Polymers, 2020, 234: 115881

DOI

85
Yang D, Li L, Chen B, Shi S, Nie J, Ma G. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer, 2019, 163: 74–85

DOI

86
Jawed A, Saxena V, Pandey L M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. Journal of Water Process Engineering, 2020, 33: 101009

DOI

87
Liu J, Shen J H, Wang J J, Liang Y, Wu R T, Zhang W W, Shi D L, Shi S X, Wang Y P, Wang Y M, Xia Y. Polymeric ionic liquid-assisted polymerization for soluble polyaniline nanofibers. Frontiers of Chemical Science and Engineering, 2021, 15(1): 118–126

DOI

88
Tian H, Yuan L, Wang J, Wu H, Wang H, Xiang A, Ashok B, Rajulu A V. Electrospinning of polyvinyl alcohol into crosslinked nanofibers: an approach to fabricate functional adsorbent for heavy metals. Journal of Hazardous Materials, 2019, 378: 120751

DOI

89
Yang X, Zhou Y, Sun Z, Yang C, Tang D. Synthesis and Cr adsorption of a super-hydrophilic polydopamine-functionalized electrospun polyacrylonitrile. Environmental Chemistry Letters, 2021, 19(1): 743–749

DOI

90
Liu B F, Liu Y, Wang Y X, Man H, Wang W X, Chen H, Bai L J. Synthesis and electrospinning of well-defined polymer brushes by modification of polyacrylonitrile. Journal of Polymer Research, 2017, 25(1): 12

DOI

91
Li Y, Zhang J, Xu C, Zhou Y F. Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Science China. Chemistry, 2016, 59(1): 95–105

DOI

92
Haider S, Park S Y. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science, 2009, 328(1-2): 90–96

DOI

93
Morillo Martin D, Magdi Ahmed M, Rodriguez M, Garcia M A, Faccini M. Aminated polyethylene terephthalate (PET) nanofibers for the selective removal of Pb(II) from polluted water. Materials, 2017, 10(12): 1352

DOI

94
Zheng P L, Shen S Z, Pu Z J, Jia K, Liu X B. Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu2+ removal. Fibers and Polymers, 2015, 16(10): 2215–2222

DOI

95
Shahram Forouz F, Hosseini Ravandi S A, Allafchian A R. Removal of Ag and Cr heavy metals using nanofiber membranes functionalized with aminopropyltriethoxysilane (APTES). Current Nanoscience, 2016, 12(2): 266–274

DOI

96
Hu Y, Wu X Y, He X L, Xing D Y. Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polymers for Advanced Technologies, 2019, 30(3): 545–551

DOI

97
Chaúque E F C, Dlamini L N, Adelodun A A, Greyling C J, Catherine Ngila J. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents. Applied Surface Science, 2016, 369: 19–28

DOI

98
Wang B, Zhang F, Wang J N, Li X Y, Li C J. Amidoxime-modified polyacrylonitrile nanofibers and application to Cr(VI) ions adsorption. Acta Polymerica Sinica, 2016, 8: 1105–1111 (in Chinese)

99
Li C, Ma H, Venkateswaran S, Hsiao B S. Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chemical Engineering Journal, 2020, 389: 123458

DOI

100
Tian Y, Wu M, Liu R G, Li Y X, Wang D Q, Tan J J, Wu R C, Huang Y. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers, 2011, 83(2): 743–748

DOI

101
Wen H F, Yang C, Yu D G, Li X Y, Zhang D F. Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chemical Engineering Journal, 2016, 290: 263–272

DOI

102
Bahramzadeh A, Zahedi P, Abdouss M. Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. Journal of Applied Polymer Science, 2016, 133(5): 42944

DOI

103
Cai Z, Song X, Zhang Q, Liu Y. Amidoxime surface modification of polyindole nanofiber membrane for effective removal of Cr(VI) from aqueous solution. Journal of Materials Science, 2017, 52(9): 5417–5434

DOI

104
Samiey B, Cheng C H, Wu J. Organic–inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials, 2014, 7(2): 673–726

DOI

105
Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polymer Chemistry, 2018, 9(26): 3562–3582

DOI

106
Karim M R, Aijaz M O, Alharth N H, Alharbi H F, Al-Mubaddel F S, Awual M R. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicology and Environmental Safety, 2019, 169: 479–486

DOI

107
Park J A, Kang J K, Lee S C, Kim S B. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(II) removal from industrial plating wastewater. RSC Advances, 2017, 7(29): 18075–18084

DOI

108
Zhang S J, Shi Q T, Christodoulatos C, Meng X G. Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: batch, spectroscopic, and modeling study. Chemosphere, 2019, 233: 405–413

DOI

109
Liu X X, Jiang B Y, Yin X, Ma H Y, Hsiao B S. Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification Technology, 2020, 233: 115976

DOI

110
Zhang S J, Shi Q T, Korfiatis G, Christodoulatos C, Wang H J, Meng X G. Chromate removal by electrospun PVA/PEI nanofibers: adsorption, reduction, and effects of co-existing ions. Chemical Engineering Journal, 2020, 387: 124179

DOI

111
Feng Q, Wu D S, Zhao Y, Wei A F, Wei Q F, Fong H. Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. Journal of Hazardous Materials, 2018, 344: 819–828

DOI

112
Yan C Q, Liu B, Lu G X, Li Y X, Yang Q B, Song Y. Preparation of AOPAN/PA-66 composite nanofibers and its adsorption of metal ions. Chemical Journal of Chinese Universities, 2016, 37(1): 189–194 (in Chinese)

113
Phan D N, Lee H, Huang B, Mukai Y, Kim I S. Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose, 2019, 26(3): 1781–1793

DOI

114
Surgutskaia N S, Martino A D, Zednik J, Ozaltin K, Lovecká L, Bergerová E D, Kimmer D, Svoboda J, Sedlarik V. Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Separation and Purification Technology, 2020, 247: 116914

DOI

115
Brandes R, Belosinschi D, Brouillette F, Chabot B. A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7(6): 103477

DOI

116
Chen C, Li F L, Guo Z H, Qu X Y, Wang J T, Zhang J. Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 334–344

DOI

117
Zhou W, He J, Cui S, Gao W. Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption. Fibers and Polymers, 2011, 12(4): 431–437

DOI

118
Mohammed Y A Y A, Ma F, Liu L, Zhang C, Dong H, Wang Q, Xu X, Al-Wahbi A A. Preparation of electrospun polyvinylidene fluoride/amidoximized polyacrylonitrile nanofibers for trace metal ions removal from contaminated water. Journal of Porous Materials, 2021, 28(2): 383–392

DOI

119
Zia Q, Tabassum M, Meng J M, Xin Z Y, Gong H, Li J S. Polydopamine-assisted grafting of chitosan on porous poly(L-lactic acid) electrospun membranes for adsorption of heavy metal ions. International Journal of Biological Macromolecules, 2021, 167: 1479–1490

DOI

120
Nie G D, Li S K, Lu X F, Wang C. Progress on applications of inorganic nanofibers synthesized by electrospinning technique. Chemical Journal of Chinese Universities, 2013, 34(1): 15–29 (in Chinese)

121
Nayl A E A A, Abd-Elhamid A I, Awwad N S, Abdelgawad M A, Wu J, Mo X, Gomha S M, Aly A A, Bräse S. Review of the recent advances in electrospun nanofibers applications in water purification. Polymers, 2022, 14(8): 1594

DOI

122
Li J J, Zhai S C, Wu W B, Xu Z Y. Hydrophobic nanocellulose aerogels with high loading of metal–organic framework particles as floating and reusable oil absorbents. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1158–1168

DOI

123
Qiao Z, Shen M, Xiao Y, Zhu M, Mignani S, Majoral J P, Shi X. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coordination Chemistry Reviews, 2018, 372: 31–51

DOI

124
Park S, Kim H R, Bang H, Fujimori K, Kim B S, Kim S H, Kim I S. Fabrication and deodorizing efficiency of nanostructured core-sheath TiO2 nanofibers. Journal of Applied Polymer Science, 2012, 125(4): 2929–2935

DOI

125
Katoch A, Choi S W, Kim H W, Kim S S. Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism. Journal of Hazardous Materials, 2015, 286: 229–235

DOI

126
Lee J H, Kim J Y, Kim J H, Kim S S. Enhanced hydrogen detection in ppb-level by electrospun SnO2-loaded ZnO nanofibers. Sensors, 2019, 19(3): 726

DOI

127
Zhao X, Ma X, Zheng P. The preparation of carboxylic-functional carbon-based nanofibers for the removal of cationic pollutants. Chemosphere, 2018, 202: 298–305

DOI

128
Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning. Advanced Materials, 2012, 24(19): 2547–2566

DOI

129
Mahapatra A, Mishra B G, Hota G. Electrospun Fe2O3−Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. Journal of Hazardous Materials, 2013, 258: 116–123

DOI

130
Abdullah N, Othman F E C, Yusof N, Matsuura T, Lau W J, Jaafar J, Ismail A F, Salleh W N W, Aziz F. Preparation of nanocomposite activated carbon nanofiber/manganese oxide and its adsorptive performance toward leads(II) from aqueous solution. Journal of Water Process Engineering, 2020, 37: 101430

DOI

131
Li S Z, Yue X L, Jing Y M, Bai S S, Dai Z F. Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380(1-3): 229–233

DOI

132
Vu D, Li X, Li Z Y, Wang C. Phase-structure effects of electrospun TiO2 nanofiber membranes on As(III) adsorption. Journal of Chemical & Engineering Data, 2013, 58(1): 71–77

DOI

133
Xu C H, Yu Z C, Yuan K K, Jin X T, Shi S Y, Wang X Q, Zhu L Y, Zhang G H, Xu D, Jiang H. Improved preparation of electrospun MgO ceramic fibers with mesoporous structure and the adsorption properties for lead and cadmium. Ceramics International, 2019, 45(3): 3743–3753

DOI

134
Mahapatra A, Mishra B G, Hota G. Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system. Industrial & Engineering Chemistry Research, 2013, 52(4): 1554–1561

DOI

135
Zhou Y Y, Li S, Wang D L, Han X. Electrospinning synthesis of hydroxyapatite nanofibers assembled from nanorods and their adsorption for heavy metal ions. Polish Journal of Environmental Studies, 2019, 28(2): 981–988

DOI

136
Nordin N A, Abdul Rahman N, Abdullah A H. Effective removal of Pb(II) ions by electrospun PAN/sago lignin-based activated carbon nanofibers. Molecules, 2020, 25(13): 3081

DOI

137
Xu C H, Shi S Y, Wang X Q, Zhou H F, Wang L, Zhu L Y, Zhang G H, Xu D. Electrospun SiO2−MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). Journal of Hazardous Materials, 2020, 381: 120974

DOI

138
Wang Y, Wang B, Wang Q, Di J, Miao S, Yu J. Amino-functionalized porous nanofibrous membranes for simultaneous removal of oil and heavy-metal ions from wastewater. ACS Applied Materials & Interfaces, 2019, 11(1): 1672–1679

DOI

139
Ibupoto A S, Qureshi U A, Arain M, Ahmed F, Khatri Z, Brohi R Z, Kim I S, Ibupoto Z. ZnO/carbon nanofibers for efficient adsorption of lead from aqueous solutions. Environmental Technology, 2020, 41(21): 2731–2741

DOI

140
Khosravi M, Maddah A S, Mehrdadi N, Bidhendi G N, Baghdadi M. Synthesis of TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters. Journal of Dispersion Science and Technology, 2021, 42(6): 802–812

DOI

141
Zhang W, Xu B R, Gong C H, Yi C W, Zhang S. Antibacterial and anti-flaming PA6 composite with metathetically prepared nano AgCl@BaSO4 co-precipitates. Frontiers of Chemical Science and Engineering, 2021, 15(2): 340–350

DOI

142
Liao Y, Loh C H, Tian M, Wang R, Fane A G. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Progress in Polymer Science, 2018, 77: 69–94

DOI

143
Wu S L, Liu F, Yang H C, Darling S B. Recent progress in molecular engineering to tailor organic-inorganic interfaces in composite membranes. Molecular Systems Design & Engineering, 2020, 5(2): 433–444

DOI

144
Jia Z, Cheng X, Guo Y, Tu L. In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chemical Engineering Journal, 2017, 325: 513–520

DOI

145
Yang G, Yan W, Wang J, Yang H. Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning. Materials Letters, 2014, 122: 117–120

DOI

146
Dou Y, Zhang W, Kaiser A. Electrospinning of metal–organic frameworks for energy and environmental applications. Advanced Science, 2020, 7(3): 1902590

DOI

147
Zhao R, Li X, Li Y, Li Y, Sun B, Zhang N, Chao S, Wang C. Functionalized magnetic iron oxide/polyacrylonitrile composite electrospun fibers as effective chromium(VI) adsorbents for water purification. Journal of Colloid and Interface Science, 2017, 505: 1018–1030

DOI

148
Uddin Z, Ahmad F, Ullan T, Nawab Y, Ahmad S, Azam F, Rasheed A, Zafar M S. Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology, 2022, 19(9): 9149–9176

DOI

149
Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 333–343

DOI

150
Hadi Najafabadi H, Irani M, Roshanfekr Rad L, Heydari Haratameh A, Haririan I. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Advances, 2015, 5(21): 16532–16539

DOI

151
Aliabadi M, Irani M, Ismaeili J, Najafzadeh S. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 518–526

DOI

152
Cai J, Lei M, Zhang Q, He J R, Chen T, Liu S, Fu S H, Li T T, Liu G, Fei P. Electrospun composite nanofiber mats of cellulose@organically modified montmorillonite for heavy metal ion removal: design, characterization, evaluation of absorption performance. Composites Part A: Applied Science and Manufacturing, 2017, 92: 10–16

DOI

153
Hamad A A, Hassouna M S, Shalaby T I, Elkady M F, Abd Elkawi M A, Hamad H A. Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. International Journal of Biological Macromolecules, 2020, 151: 1299–1313

DOI

154
Zhou S L, Liu F, Zhang Q, Chen B Y, Lin C J, Chang C T. Preparation of polyacrylonitrile/ferrous chloride composite nanofibers by electrospinning for efficient reduction of Cr(VI). Journal of Nanoscience and Nanotechnology, 2015, 15(8): 5823–5832

DOI

155
Deng S, Liu X H, Liao J B, Lin H, Liu F. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions. Chemical Engineering Journal, 2019, 375: 122086

DOI

156
Peng L C, Zhang X L, Sun Y X, Xing Y, Li C J. Heavy metal elimination based on metal organic framework highly loaded on flexible nanofibers. Environmental Research, 2020, 188: 109742

DOI

157
Haddad M Y, Alharbi H F. Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. Journal of Applied Polymer Science, 2019, 136(11): 47209

DOI

158
Xu X Z, Zhang M X, Lv H, Zhou Y J, Yang Y Y, Yu D G. Electrospun polyacrylonitrile-based lace nanostructures and their Cu(II) adsorption. Separation and Purification Technology, 2022, 288: 120643

DOI

159
Sun B, Li X, Zhao R, Yin M, Wang Z, Jiang Z, Wang C. Hierarchical aminated PAN/γ-AlOOH electrospun composite nanofibers and their heavy metal ion adsorption performance. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 219–227

DOI

160
Makaremi M, Lim C X, Pasbakhsh P, Lee S M, Goh K L, Chang H, Chan E S. Electrospun functionalized polyacrylonitrile-chitosan Bi-layer membranes for water filtration applications. RSC Advances, 2016, 6(59): 53882–53893

DOI

161
Wu S, Li F, Wang H, Fu L, Zhang B, Li G. Effects of poly(vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer, 2010, 51(26): 6203–6211

DOI

162
Rad L R, Momeni A, Ghazani B F, Irani M, Mahmoudi M, Noghreh B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chemical Engineering Journal, 2014, 256: 119–127

DOI

163
Alipour D, Keshtkar A R, Moosavian M A. Adsorption of thorium(IV) from simulated radioactive solutions using a novel electrospun PVA/TiO2/ZnO nanofiber adsorbent functionalized with mercapto groups: study in single and multi-component systems. Applied Surface Science, 2016, 366: 19–29

DOI

164
Roque-Ruiz J H, Cabrera-Ontiveros E A, Torres-Pérez J, Reyes-López S Y. Preparation of PCL/Clay and PVA/Clay electrospun fibers for cadmium (Cd2+), chromium (Cr3+), copper (Cu2+) and lead (Pb2+) removal from Water. Water, Air, and Soil Pollution, 2016, 227(8): 286

DOI

165
Jia B B, Wang J N, Wu J, Li C J. “Flower-Like” PA6@Mg(OH)2 electrospun nanofibers with Cr(VI)-removal capacity. Chemical Engineering Journal, 2014, 254: 98–105

DOI

166
Irandoost M, Pezeshki-Modaress M, Javanbakht V. Removal of lead from aqueous solution with nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. Journal of Water Process Engineering, 2019, 32: 100981

DOI

167
Shariful M I, Sepehr T, Mehrali M, Ang B C, Amalina M A. Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. Journal of Applied Polymer Science, 2018, 135(7): 45851

DOI

168
Habiba U, Afifi A M, Salleh A, Ang B C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials, 2017, 322: 182–194

DOI

169
Kim J, Kang T, Kim H, Shin H J, Oh S G. Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu(II) adsorbent. Journal of Industrial and Engineering Chemistry, 2019, 77: 273–279

DOI

170
Esfahani A R, Zhang Z Y, Sip Y Y L, Zhai L, Sadmani A. Removal of heavy metals from water using electrospun polyelectrolyte complex fiber mats. Journal of Water Process Engineering, 2020, 37: 101438

DOI

171
Yari S, Abbasizadeh S, Mousavi S E, Moghaddam M S, Moghaddam A Z. Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 2015, 94: 159–171

DOI

172
Lee C H, Chiang C L, Liu S J. Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Separation and Purification Technology, 2013, 118: 737–743

DOI

173
Fang Y C, Liu X H, Wu X, Tao X C, Fei W Q. Electrospun polyurethane/phytic acid nanofibrous membrane for high efficient removal of heavy metal ions. Environmental Technology, 2021, 42(7): 1053–1060

DOI

174
Pan L H, Wang Z Q, Zhao X Q, He H Y. Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers. International Journal of Biological Macromolecules, 2019, 134: 223–229

DOI

175
Huang C, Thomas N L. Fabrication of porous fibers via electrospinning: strategies and applications. Polymer Reviews, 2020, 60(4): 595–647

DOI

176
Chen P Y, Tung S H. One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules, 2017, 50(6): 2528–2534

DOI

177
Ren Q, Shi Z, Yan L, Zhang F, Fan L, Zhang L, Lv W. High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(38): 19898–19907

DOI

178
Kang P H, Gohs U, Richter M, Wolz D S J, Richter B, Cherif C, Böhm R, Jäger H. Fabrication and characterization of titanium dioxide nanoparticle filled polyacrylonitrile fiber for photocatalytic application by wet spinning. Fibers and Polymers, 2021, 22(11): 2995–3002

DOI

179
Zhang W, Chai H, Diao G. Highly porous cyclodextrin functionalized nanofibrous membrane by acid etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123907

DOI

180
Mokhtari-Shourijeh Z, Montazerghaem L, Olya M E. Preparation of porous nanofibers from electrospun polyacrylonitrile/polyvinylidene fluoride composite nanofibers by inexpensive salt using for dye adsorption. Journal of Polymers and the Environment, 2018, 26(9): 3550–3563

DOI

181
Mei L, Wang X, Liu Y, Wang J. Computer simulation of PAN/PVP blends compatibility and preparation of aligned PAN porous nanofibers via magnetic-field-assisted electrospinning PAN/PVP blends. Medziagotyra, 2019, 25(1): 54–59

DOI

182
Hong G, Li X, Shen L, Wang M, Wang C, Yu X, Wang X. High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure. Journal of Hazardous Materials, 2015, 295: 161–169

DOI

183
Wang Y, Cheng T, Xu L. Preparation, characterization, and adsorption application of poly(lactic acid)/tea polyphenols porous composite nanofiber membranes. Journal of the Textile Institute, 2019, 110(12): 1760–1766

DOI

184
Ning T B, Zhou Y J, Xu H X, Guo S R, Wang K, Yu D G. Orodispersible membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes, 2021, 11(11): 802

DOI

185
Liu Y B, Chen X H, Yu D G, Liu H, Liu Y Y, Liu P. Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Molecular Pharmaceutics, 2021, 18(11): 4170–4178

DOI

186
Ma L, Shi X J, Zhang X X, Dong S J, Li L L. Electrospun cellulose acetate-polycaprolactone/chitosan core–shell nanofibers for the removal of Cr(VI). Physica Status Solidi A: Applications and Materials Science, 2019, 216(22): 1900379

DOI

187
Assaifan A K, Aijaz M O, Luqman M, Drmosh Q A, Karim M R, Alharbi H F. Removal of cadmium ions from water using coaxially electrospun PAN/ZnO-encapsulated PVDF nanofiber membranes. Polymer Bulletin, 2022, 79(5): 2831–2850

DOI

188
Almasian A, Giahi M, Fard G C, Dehdast S A, Maleknia L. Removal of heavy metal ions by modified PAN/PANI-nylon core–shell nanofibers membrane: filtration performance, antifouling and regeneration behavior. Chemical Engineering Journal, 2018, 351: 1166–1178

DOI

189
Yarandpour M R, Rashidi A, Khajavi R, Eslahi N, Yazdanshenas M E. Mesoporous PAA/dextran-polyaniline core–shell nanofibers: optimization of producing conditions, characterization and heavy metal adsorptions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 566–581

DOI

190
Li X, Zhao R, Sun B L, Lu X F, Zhang C C, Wang Z J, Wang C. Fabrication of alpha-Fe2O3-gamma-Al2O3 core–shell nanofibers and their Cr(VI) adsorptive properties. RSC Advances, 2014, 4(80): 42376–42382

DOI

191
Zhang Y, Li S, Xu Y, Shi X, Zhang M, Huang Y, Liang Y, Chen Y, Ji W, Kim J R, Song W, Yu D G, Kim I. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Research, 2022, 15(6): 5556–5568

DOI

192
Ma L, Ma S Y, Shen X F, Wang T T, Jiang X H, Chen Q, Qiang Z, Yang H M, Chen H. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sensors and Actuators B: Chemical, 2018, 255: 2546–2554

DOI

193
Pakravan M, Heuzey M C, Ajji A. Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules, 2012, 13(2): 412–421

DOI

194
Li W Y, Li Y Z, Liu J D, Chao S, Yang T Y, Li L J, Wang C, Li X. A novel hollow carbon@MnO2 electrospun nanofiber adsorbent for efficient removal of Pb2+ in wastewater. Chemical Research in Chinese Universities, 2021, 37(3): 496–504

DOI

195
Zhao J, Lu Z, He X, Zhang X, Li Q, Xia T, Zhang W, Lu C, Deng Y. One-step fabrication of Fe(OH)3@cellulose hollow nanofibers with superior capability for water purification. ACS Applied Materials & Interfaces, 2017, 9(30): 25339–25349

DOI

196
Koushkbaghi S, Zakialamdari A, Pishnamazi M, Ramandi H F, Aliabadi M, Irani M. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chemical Engineering Journal, 2018, 337: 169–182

DOI

197
Huang S H, Hsu C J, Liaw D J, Hu C C, Lee K R, Lai J Y. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. Journal of Membrane Science, 2008, 307(1): 73–81

DOI

198
Wu Y, Qiu X, Cao S, Chen J, Shi X, Du Y, Deng H. Adsorption of natural composite sandwich-like nanofibrous mats for heavy metals in aquatic environment. Journal of Colloid and Interface Science, 2019, 539: 533–544

DOI

199
Efome J E, Rana D, Matsuura T, Lan C Q. Metal–organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(10): 4550–4555

DOI

200
Efome J E, Rana D, Matsuura T, Lan C Q. Insight studies on metal–organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018, 10(22): 18619–18629

DOI

201
Lv H, Zhang M, Wang P, Xu X, Liu Y, Yu D G. Ingenious construction of Ni(DMG)2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129561

DOI

202
Huang C, Dong J, Zhang Y, Chai S, Wang X, Kang S, Yu D, Wang P, Jiang Q. Gold nanoparticles-loaded polyvinylpyrrolidone/ethylcellulose coaxial electrospun nanofibers with enhanced osteogenic capability for bone tissue regeneration. Materials & Design, 2021, 212: 110240

DOI

203
Zhao K, Lu Z H, Zhao P, Kang S X, Yang Y Y, Yu D G. Modified tri-axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics. Chemical Engineering Journal, 2021, 425: 131455

DOI

204
Huang Y P, Miao Y E, Liu T X. Electrospun fibrous membranes for efficient heavy metal removal. Journal of Applied Polymer Science, 2014, 131(9): 40864

DOI

205
Zhu F, Zheng Y M, Zhang B G, Dai Y R. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 2021, 401: 123608

DOI

206
Efome J E, Rana D, Matsuura T, Yang F, Con Y, Lan C Q. Triple-layered nanofibrous metal–organic framework-based membranes for desalination by direct contact membrane distillation. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6601–6610

DOI

207
Efome J E, Rana D, Matsuura T, Lan C Q. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal–organic framework membrane filtration process. Science of the Total Environment, 2019, 674: 355–362

DOI

208
Efome J E, Rana D, Matsuura T, Lan C Q. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal−organic framework incorporated nanofibrous membrane. Chemical Engineering Journal, 2018, 352: 737–744

DOI

209
Phan D N, Khan M Q, Nguyen N T, Phan T T, Ullah A, Khatri M, Kien N N, Kim I S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydrate Polymers, 2021, 252: 117175

DOI

210
Chamani H, Woloszyn J, Matsuura T, Rana D, Lan C Q. Pore wetting in membrane distillation: a comprehensive review. Progress in Materials Science, 2021, 122: 100843

DOI

Outlines

/