RESEARCH ARTICLE

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds with methanol as hydrogen donor

  • Haonan Shi ,
  • Xiaoyu Gu ,
  • Yinteng Shi ,
  • Dandan Wang ,
  • Sihao Shu ,
  • Zhongze Wang ,
  • Jixiang Chen
Expand
  • Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

Received date: 27 Apr 2022

Accepted date: 25 Jun 2022

Published date: 15 Feb 2023

Copyright

2022 Higher Education Press

Abstract

Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni–Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation–decarbonylation, generating n-pentadecane. Also, the C–C bond hydrolysis and methanation are suppressed on Ni–Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.

Cite this article

Haonan Shi , Xiaoyu Gu , Yinteng Shi , Dandan Wang , Sihao Shu , Zhongze Wang , Jixiang Chen . Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni–Sn intermetallic compounds with methanol as hydrogen donor[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(2) : 139 -155 . DOI: 10.1007/s11705-022-2217-4

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21576193 and 21176177).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2217-4 and is accessible for authorized users.
1
Kordulis C, Bourikas K, Gousi M, Kordouli E, Lycourghiotis A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 2016, 181: 156–196

DOI

2
Pan D, Zhou J, Peng B, Wang S, Zhao Y, Ma X. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16(3): 397–407

DOI

3
Zhang J, Kong L, Chen Y, Huang H, Zhang H, Yao Y, Xu Y, Xu Y, Wang S, Ma X, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678

DOI

4
Hegde V, Pandit P, Rananaware P, Brahmkhatri V P. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1198–1210

DOI

5
Yao X Y, Strathmann T J, Li Y L, Cronmiller L E, Ma H L, Zhang J. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chemistry, 2021, 23(3): 1114–1129

DOI

6
Chai S Q, Zhang G J, Li G Q, Zhang Y F. Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy, 2021, 23(7): 1931–1946

DOI

7
Zhang Z, Yang Q, Chen H, Chen K, Lu X, Ouyang P, Fu J, Chen J G. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20(1): 197–205

DOI

8
Ai L, Shi Y, Han Y, Chen J. In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 209–227

DOI

9
Shi Y, Ai L, Shi H, Gu X, Han Y, Chen J. Carbon-coated Ni–Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Frontiers of Chemical Science and Engineering, 2022, 16(4): 443–460

DOI

10
Hollak S A W, Ariëns M A, de Jong K P, van Es D S. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 2014, 7(4): 1057–1062

DOI

11
Vardon D R, Sharma B K, Jaramillo H, Kim D, Choe J K, Ciesielski P N, Strathmann T J. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 2014, 16(3): 1507–1520

DOI

12
Zhang J, Huo X, Li Y, Strathmann T J. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400–14410

DOI

13
Miao C, Marin-Flores O, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521–4530

DOI

14
Miao C, Marin-Flores O, Davidson S D, Li T, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 2016, 166: 302–308

DOI

15
Liu X, Yang M, Deng Z, Dasgupta A, Guo Y. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: mechanism and kinetic modeling. Chemical Engineering Journal, 2021, 407: 126332

DOI

16
Kouzu M, Kojima M, Mori K, Yamanaka S. Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 2021, 217: 106831

DOI

17
Zhang J, Tian F, Chen J, Shi Y, Cao H, Ning P, Sun S, Xie Y. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15(2): 288–298

DOI

18
Lin L, Yu Q, Peng M, Li A, Yao S, Tian S, Liu X, Li A, Jiang Z, Gao R, Han X, Li Y, Wen X, Zhou W, Ma D. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. Journal of the American Chemical Society, 2021, 143(1): 309–317

DOI

19
Huber G W, Shabaker J W, Dumesic J A. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 2003, 300(5628): 2075–2077

DOI

20
Zhao N, Zheng Y, Chen J. Remarkably reducing carbon loss and H2 consumption on Ni–Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons. Journal of Energy Chemistry, 2020, 41: 194–208

DOI

21
Pan Z, Wang R, Chen J. Deoxygenation of methyl laurate as a model compound on Ni–Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 2018, 224: 88–100

DOI

22
Kukushkin R G, Bulavchenko O A, Kaichev V V, Yakovlev V A. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters. Applied Catalysis B: Environmental, 2015, 163: 531–538

DOI

23
Xing S, Liu Y, Liu X, Li M, Fu J, Liu P, Lv P, Wang Z. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Applied Catalysis B: Environmental, 2020, 269: 118718

DOI

24
Rodiansono R, Pratama M I, Astuti M D, Abdullah A, Nugroho A, Susi S. Selective hydrogenation of dodecanoic acid to dodecane-1-ol catalyzed by supported bimetallic Ni–Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 2018, 13(2): 311–319

DOI

25
Onda A, Komatsu T, Yashima T. Characterization and catalytic properties of Ni–Sn intermetallic compounds in acetylene hydrogenation. Physical Chemistry Chemical Physics, 2000, 2(13): 2999–3005

DOI

26
Yang Y, Chen L, Chen Y, Liu W, Feng H, Wang B, Zhang X, Wei M. The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21(19): 5352–5362

DOI

27
Wang G, Wang H, Zhang H, Zhu Q, Li C, Shan H. Highly selective and stable NiSn/SiO2 catalyst for isobutane dehydrogenation: effects of Sn addition. ChemCatChem, 2016, 8(19): 3137–3145

DOI

28
Reangchim P, Saelee T, Itthibenchapong V, Junkaew A, Chanlek N, Eiadua A, Kungwan N, Faungnawakij K. Role of Sn promoter in Ni/Al2O3 catalyst for the deoxygenation of stearic acid and coke formation: experimental and theoretical studies. Catalysis Science & Technology, 2019, 9(13): 3361–3372

DOI

29
Ravenelle R M, Schüβler F, D’Amico A, Danilina N, van Bokhoven J A, Lercher J A, Jones C W, Sievers C. Stability of zeolites in hot liquid water. Journal of Physical Chemistry C, 2010, 114(46): 19582–19595

DOI

30
Lange J P. Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015, 54(45): 13186–13197

DOI

31
Dai Y Q, Lu P, Cao Z M, Campbell C T, Xia Y N. The physical chemistry and materials science behind sinter-resistant catalysts. Chemical Society Reviews, 2018, 47(12): 4314–4331

DOI

32
Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881

DOI

33
Li S, Cao R, Xu M, Deng Y, Lin L, Yao S, Liang X, Peng M, Gao Z, Ge Y, Liu J X, Li W X, Zhou W, Ma D. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. National Science Review, 2022, 9(1): nwab026

DOI

34
Li S, Liu J, Yin Z, Ren P, Lin L, Gong Y, Yang C, Zheng X, Cao R, Yao S, Deng Y, Liu X, Gu L, Zhou W, Zhu J, Wen X, Xu B, Ma D. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catalysis, 2020, 10(1): 907–913

DOI

35
Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li Y W, Wen X D, Zhou W, Ma D. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nature Nanotechnology, 2019, 14(4): 354–361

DOI

36
Zhang X, Zhang M, Deng Y, Xu M, Artiglia L, Wen W, Gao R, Chen B, Yao S, Zhang X, Peng M, Yan J, Li A, Jiang Z, Gao X, Cao S, Yang C, Kropf A J, Shi J, Xie J, Bi M, van Bokhoven J A, Li Y W, Wen X, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589(7842): 396–401

DOI

37
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14(8): 763–774

DOI

38
Choma J, Jamioła D, Augustynek K, Marszewski M, Jaroniec M. Carbon–gold core–shell structures: formation of shells consisting of gold nanoparticles. Chemical Communications (Cambridge), 2012, 48(33): 3972–3974

DOI

39
Wei J, Wang G, Chen F, Bai M, Liang Y, Wang H, Zhao D, Zhao Y. Sol–gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angewandte Chemie International Edition, 2018, 57(31): 9838–9843

DOI

40
Feng B, Feng Y, Qin J, Wang Z, Zhang Y, Du F, Zhao Y, Wei J. Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sensors and Actuators B: Chemical, 2021, 341: 129965

DOI

41
Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951

DOI

42
Kortüm G, Vogel W, Andrussow K. Dissociation constants of organic acids in aqueous solution. Pure and Applied Chemistry, 1960, 1(2–3): 187–536

DOI

43
Konp A, Pilato L. Phenolic Resins, Chemistry, Application and Performance. Berlin: Springer-Verlag Berlin Heidelberg, 1985, 24–58

44
Fraser D A, Hall R W, Raum A L J. Preparation of ‘high-ortho’ novolak resins I. Metal ion catalysis and orientation effect. Journal of Applied Chemistry, 1957, 7(12): 676–689

DOI

45
Orlov Y F, Maslov E I, Belkina E I. Solubilities of metal hydroxides. Russian Journal of Inorganic Chemistry, 2013, 58(11): 1306–1314

DOI

46
Maver U, Žnidaršič A, Saboti D, Srčič S, Gaberšček M, Godec A, Planinšek O. The relation between the interfacial contact and SiO2 coating efficiency and properties in the case of two clarithromycin polymorphs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1): 119–125

DOI

47
Ōya A, Marsh H. Phenomena of catalytic graphitization. Journal of Materials Science, 1982, 17(2): 309–322

DOI

48
Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

DOI

49
Lyu Y, Wang P, Liu D, Zhang F, Senftle T P, Zhang G, Zhang Z, Wang J, Liu W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods, 2022, 6(6): 2200235

DOI

50
Hegde R. Core level binding energy shifts in dilute tin alloys. Surface and Interface Analysis, 1982, 4(5): 204–207

DOI

51
Tsujino Y, Wakai C, Matubayashi N, Nakahara M. Noncatalytic Cannizzaro-type reaction of formaldehyde in hot water. Chemistry Letters, 1999, 28(4): 287–288

DOI

52
Deng J, Ren P J, Deng D H, Bao X H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(7): 2100–2104

DOI

53
Chen Y, Wei J, Duyar M S, Ordomsky V V, Khodakov A Y, Liu J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chemical Society Reviews, 2021, 50(4): 2337–2366

DOI

54
Dong C, Yu Q, Ye R P, Su P, Liu J, Wang G H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: void-confinement effects in liquid-phase hydrogenations. Angewandte Chemie International Edition, 2020, 59(42): 18374–18379

DOI

55
Pang S F, Liu F F, Zhang Y J, Dong Z W, Su Q, Wang W F, Li Z H, Zhou F, Wang Y B. Construction of functional superhydrophobic biochars as hydrogen transfer catalysts for dehydrogenation of N-heterocycles. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9062–9077

DOI

56
Yun Y S, Berdugo C E, Flaherty D W. Advances in understanding the selective hydrogenolysis of biomass derivatives. ACS Catalysis, 2021, 11(17): 11193–11232

DOI

57
Peng B X, Yuan X G, Zhao C, Lercher J A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. Journal of the American Chemical Society, 2012, 134(22): 9400–9405

DOI

58
Wang L, Niu X, Chen J. SiO2 supported Ni–In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Applied Catalysis B: Environmental, 2020, 278: 119293

DOI

59
Chen L, Zhu Y, Zheng H, Zhang C, Li Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411: 95–104

DOI

60
Luo Z, Bing Q, Kong J, Liu J, Zhao C. Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science & Technology, 2018, 8(5): 1322–1332

DOI

61
Ma B, Li C, Liu S, Lu Y. IR evidence for the formation of tilted CO on alumina-supported nickel catalyst. Chemical Physics Letters, 1992, 196(5): 433–436

DOI

62
Kupila R, Lappalainen K, Hu T, Heponiemi A, Bergna D, Lassi U. Production of ethyl lactate by activated carbon-supported Sn and Zn oxide catalysts utilizing lignocellulosic side streams. Applied Catalysis A: General, 2021, 624: 118327

DOI

Outlines

/