REVIEW ARTICLE

Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review

  • Xuewen Mu 1 ,
  • Yun Xu 2 ,
  • Zheng Wang , 1 ,
  • Dunyun Shi , 3
Expand
  • 1. School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, China
  • 2. Central Lab, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
  • 3. Institute of Hematology, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China

Received date: 28 Mar 2022

Accepted date: 17 May 2022

Published date: 15 Feb 2023

Copyright

2022 Higher Education Press

Abstract

The two-electron cytoplasmic reductase NAD(P)H:quinone oxidoreductase 1 is expressed in many tissues. NAD(P)H:quinone oxidoreductase 1 is well-known for being highly expressed in most cancers. Therefore, it could be a target for cancer therapy. Because it is a quinone reductase, many bioimaging probes based on quinone structures target NAD(P)H:quinone oxidoreductase 1 to diagnose tumours. Its expression is higher in tumours than in normal tissues, and using target drugs such as β-lapachone to reduce side effects in normal tissues can help. However, the physicochemical properties of β-lapachone limit its application. The problem can be solved by using nanosystems to deliver β-lapachone. This mini-review summarizes quinone-based fluorescent, near-infrared and two-photon fluorescent probes, as well as nanosystems for delivering the NAD(P)H:quinone oxidoreductase 1-activating drug β-lapachone. This review provides valuable information for the future development of probes and nano-delivery systems that target NAD(P)H:quinone oxidoreductase 1.

Cite this article

Xuewen Mu , Yun Xu , Zheng Wang , Dunyun Shi . Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(2) : 123 -138 . DOI: 10.1007/s11705-022-2194-7

Acknowledgments

The authors acknowledge the financial support from the Tianjin Science and Technology Committee (Grant No. 19JCYBJC28400), the Basic Research General Program of Shenzhen Science and Technology Innovation Commission in 2020 (Grant No. JCYJ20190806162412752).
1
TedeschiG, ChenS, MasseyV. DT-diaphorase. Redox potential, steady-state, and rapid reaction studies. Journal of Biological Chemistry, 1995, 270( 3): 11981204

2
RossD, SiegelD. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Frontiers in Physiology, 2017, 8 : 595

DOI

3
HosodaS, NakamuraW, HayashiK. Properties and reaction mechanism of DT diaphorase from rat liver. Journal of Biological Chemistry, 1974, 249( 20): 6416– 6423

DOI

4
LiR, BianchetM A, TalalayP, AmzelL M. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92( 19): 8846– 8850

DOI

5
RossD, KepaJ K, WinskiS L, BeallH D, AnwarA, SiegelD. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chemico-Biological Interactions, 2000, 129( 1–2): 77– 97

DOI

6
SiegelD, GustafsonD L, DehnD L, HanJ Y, BoonchoongP, BerlinerL J, RossD. NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Molecular Pharmacology, 2004, 65( 5): 1238– 1247

DOI

7
BeyerR E, Segura-AguilarJ, Di BernardoS, CavazzoniM, FatoR, FiorentiniD, GalliM C, SettiM, LandiL, LenazG. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93( 6): 2528– 2532

DOI

8
LieblerD C. The role of metabolism in the antioxidant function of vitamin E. Critical Reviews in Toxicology, 1993, 23( 2): 147– 169

DOI

9
BindoliA, ValenteM, CavalliniL. Inhibition of lipid peroxidation by alpha-tocopherolquinone and α-tocopherol-hydroquinone. Biochemistry International, 1985, 10( 5): 753– 761

10
KoharI BacaM SuarnaC StockerR Southwell-KeelyP T. Is α-tocopherol a reservoir for α-tocopheryl hydroquinone? Free Radical Biology & Medicine, 1995, 19( 2): 197– 207

11
SiegelD, BoltonE M, BurrJ A, LieblerD C, RossD. The reduction of alpha-tocopherolquinone by human NAD(P)H:quinone oxidoreductase: the role of alpha-tocopherol hydroquinone as a cellular antioxidant. Molecular Pharmacology, 1997, 52( 2): 300– 305

DOI

12
RossD. Quinone reductases multitasking in the metabolic world. Drug Metabolism Reviews, 2004, 36( 3–4): 639– 654

DOI

13
ZhuH, LiY. NAD(P)H:quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovascular Toxicology, 2012, 12( 1): 39– 45

DOI

14
ZhuH, JiaZ, MahaneyJ E, RossD, MisraH P, TrushM A, LiY. The highly expressed and inducible endogenous NAD(P)H:quinone oxidoreductase 1 in cardiovascular cells acts as a potential superoxide scavenger. Cardiovascular Toxicology, 2007, 7( 3): 202– 211

DOI

15
MccordJ M, FridovichI. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 1969, 244( 22): 6049– 6055

DOI

16
SiegelD, RossD. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radical Biology & Medicine, 2000, 29( 3–4): 246– 253

DOI

17
OhE T, ParkH J. Implications of NQO1 in cancer therapy. BMB Reports, 2015, 48( 11): 609– 617

DOI

18
ZhangK, ChenD, MaK, WuX, HaoH, JiangS. NAD(P)H:quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. Journal of Medicinal Chemistry, 2018, 61( 16): 6983– 7003

DOI

19
LevineA J. P53, the cellular gatekeeper for growth and division. Cell, 1997, 88( 3): 323– 331

DOI

20
AsherG, LotemJ, CohenB, SachsL, ShaulY. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98( 3): 1188– 1193

DOI

21
AsherG, LotemJ, KamaR, SachsL, ShaulY. NQO1 stabilizes p53 through a distinct pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99( 5): 3099– 3104

DOI

22
AsherG, LotemJ, SachsL, KahanaC, ShaulY. MDM-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99( 20): 13125– 13130

DOI

23
AsherG, BercovichZ, TsvetkovP, ShaulY, KahanaC. 20s proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Molecular Cell, 2005, 17( 5): 645– 655

DOI

24
CornblattB S, YeL, Dinkova-KostovaA T, ErbM, FaheyJ W, SinghN K, ChenM S, StiererT, Garrett-MayerE, ArganiP, DavidsonN E, TalalayP, KenslerT W, VisvanathanK. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 2007, 28( 7): 1485– 1490

DOI

25
SurhY J. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 2003, 3( 10): 768– 780

DOI

26
SchlagerJ J, PowisG. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. International Journal of Cancer, 1990, 45( 3): 403– 409

DOI

27
MaY, KongJ, YanG, RenX, JinD, JinT, LinL, LinZ. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer, 2014, 14( 1): 414

DOI

28
YangY, ZhangY, WuQ, CuiX, LinZ, LiuS, ChenL. Clinical implications of high NQO1 expression in breast cancers. Journal of Experimental & Clinical Cancer Research, 2014, 33( 1): 14

DOI

29
LewisA M, OughM, DuJ, TsaoM S, OberleyL W, CullenJ J. Targeting NAD(P)H:quinone oxidoreductase (NQO1) in pancreatic cancer. Molecular Carcinogenesis, 2017, 56( 7): 1825– 1834

DOI

30
MadajewskiB, BoatmanM A, ChakrabartiG, BoothmanD A, BeyE A. Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC. Molecular Cancer Research, 2016, 14( 1): 14– 25

DOI

31
OhE T, KimJ W, KimJ M, KimS J, LeeJ S, HongS S, GoodwinJ, RuthenborgR J, JungM G, LeeH J, LeeC H, ParkE S, KimC, ParkH J. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nature Communications, 2016, 7( 1): 13593

DOI

32
MosesM A, BremH, LangerR. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell, 2003, 4( 5): 337– 341

DOI

33
WagnerH. Image-guided conformal radiation therapy planning and delivery for non-small-cell lung cancer. Cancer Control, 2003, 10( 4): 277– 288

DOI

34
AltmanB J, StineZ E, DangC V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 2016, 16( 11): 749

DOI

35
CallahanM K, PostowM A, WolchokJ D. Targeting T cell co-receptors for cancer therapy. Immunity, 2016, 44( 5): 1069– 1078

DOI

36
AwadallahN S, DehnD, ShahR J, Russell NashS, ChenY K, RossD, BentzJ S, ShroyerK R. NQO1 expression in pancreatic cancer and its potential use as a biomarker. Applied Immunohistochemistry & Molecular Morphology, 2008, 16( 1): 24– 31

DOI

37
RazgulinA, MaN, RaoJ. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chemical Society Reviews, 2011, 40( 7): 4186– 4216

DOI

38
SiegelR, NaishadhamD, JemalA. Cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 2012, 62( 1): 10– 29

DOI

39
NguyenQ T, OlsonE S, AguileraT A, JiangT, ScadengM, ElliesL G, TsienR Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107( 9): 4317– 4322

DOI

40
SilversW C, PrasaiB, BurkD H, BrownM L, MccarleyR L. Profluorogenic reductase substrate for rapid, selective, and sensitive visualization and detection of human cancer cells that overexpress nqo1. Journal of the American Chemical Society, 2013, 135( 1): 309– 314

DOI

41
DukeR M, VealeE B, PfefferF M, KrugerP E, GunnlaugssonT. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chemical Society Reviews, 2010, 39( 10): 3936– 3953

DOI

42
QianX, XiaoY, XuY, GuoX, QianJ, ZhuW. “Alive” dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chemical Communications (Cambridge), 2010, 46( 35): 6418– 6436

DOI

43
McmahonK M, VolpatoM, ChiH Y, MusiwaroP, PoterlowiczK, PengY, ScallyA J, PattersonL H, PhillipsR M, SuttonC W. Characterization of changes in the proteome in different regions of 3D multicell tumor spheroids. Journal of Proteome Research, 2012, 11( 5): 2863– 2875

DOI

44
CoxM C, ReeseL M, BickfordL R, VerbridgeS S. Toward the broad adoption of 3D tumor models in the cancer drug pipeline. ACS Biomaterials Science & Engineering, 2015, 1( 10): 877– 894

DOI

45
FriedrichJ, SeidelC, EbnerR, Kunz-SchughartL A. Spheroid-based drug screen: considerations and practical approach. Nature Protocols, 2009, 4( 3): 309– 324

DOI

46
VinciM, GowanS, BoxallF, PattersonL, ZimmermannM, CourtW, LomasC, MendiolaM, HardissonD, EcclesS A. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 2012, 10( 1): 29

DOI

47
VahrmeijerA L, HuttemanM, van der VorstJ R, van de VeldeC J, FrangioniJ V. Image-guided cancer surgery using near-infrared fluorescence. Nature Reviews. Clinical Oncology, 2013, 10( 9): 507– 518

DOI

48
NguyenQ T, TsienR Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nature Reviews Cancer, 2013, 13( 9): 653– 662

DOI

49
KeereweerS, van DrielP B, SnoeksT J, KerrebijnJ D, Baatenburg De JongR J, VahrmeijerA L, SterenborgH J, LowikC W. Optical image-guided cancer surgery: challenges and limitations. Clinical Cancer Research, 2013, 19( 14): 3745– 3754

DOI

50
Van DamG M, ThemelisG, CraneL M, HarlaarN J, PleijhuisR G, KelderW, SarantopoulosA, De JongJ S, ArtsH J, Van Der ZeeA G, BartJ, LowP S, NtziachristosV. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Medicine, 2011, 17( 10): 1315– 1319

DOI

51
KobayashiH, ChoykeP L. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Accounts of Chemical Research, 2011, 44( 2): 83– 90

DOI

52
De MolinerF, BiazruchkaI, KonsewiczK, BensonS, SinghS, LeeJ S, VendrellM. Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores. Frontiers of Chemical Science and Engineering, 2022, 16( 1): 128– 135

DOI

53
ShenZ, PrasaiB, NakamuraY, KobayashiH, JacksonM S, MccarleyR L. A near-infrared, wavelength-shiftable, turn-on fluorescent probe for the detection and imaging of cancer tumor cells. ACS Chemical Biology, 2017, 12( 4): 1121– 1132

DOI

54
GongQ, YangF, HuJ, LiT, WangP, LiX, ZhangX. Rational designed highly sensitive NQO1-activated near-infrared fluorescent probe combined with nqo1 substrates in vivo: an innovative strategy for NQO1-overexpressing cancer theranostics. European Journal of Medicinal Chemistry, 2021, 224 : 113707

DOI

55
MendozaM F, HollabaughN M, HettiarachchiS U, MccarleyR L. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Biochemistry, 2012, 51( 40): 8014– 8026

DOI

56
PunganuruS R, MadalaH R, ArutlaV, ZhangR, SrivenugopalK S. Characterization of a highly specific NQO1-activated near-infrared fluorescent probe and its application for in vivo tumor imaging. Scientific Reports, 2019, 9( 1): 8577

DOI

57
ChengZ, ValençaW O, DiasG G, ScottJ, BarthN D, deMoliner F, SouzaG B P, MellanbyR J, VendrellM, daSilva Júnior E N. Natural product-inspired profluorophores for imaging NQO1 activity in tumour tissues. Bioorganic & Medicinal Chemistry, 2019, 27( 17): 3938– 3946

DOI

58
YuanZ, XuM, WuT, ZhangX, ShenY, ErnestU, GuiL, WangF, HeQ, ChenH. Design and synthesis of NQO1 responsive fluorescence probe and its application in bio-imaging for cancer diagnosis. Talanta, 2019, 198 : 323– 329

DOI

59
ZhangJ, LiuH W, HuX X, LiJ, LiangL H, ZhangX B, TanW. Efficient two-photon fluorescent probe for nitroreductase detection and hypoxia imaging in tumor cells and tissues. Analytical Chemistry, 2015, 87( 23): 11832– 11839

DOI

60
ShinW S, LeeM G, VerwilstP, LeeJ H, ChiS G, KimJ S. Mitochondria-targeted aggregation induced emission theranostics: crucial importance of in situ activation. Chemical Science, 2016, 7( 9): 6050– 6059

61
XuQ, HeoC H, KimJ A, LeeH S, HuY, KimD, SwamyK M, KimG, NamS J, KimH M, YoonJ. A selective imidazoline-2-thione-bearing two-photon fluorescent probe for hypochlorous acid in mitochondria. Analytical Chemistry, 2016, 88( 12): 6615– 6620

DOI

62
XuQ, HeoC H, KimG, LeeH W, KimH M, YoonJ. Development of imidazoline-2-thiones based two-photon fluorescence probes for imaging hypochlorite generation in a co-culture system. Angewandte Chemie International Edition, 2015, 54( 16): 4890– 4894

DOI

63
KimH M, ChoB R. Small-molecule two-photon probes for bioimaging applications. Chemical Reviews, 2015, 115( 11): 5014– 5055

DOI

64
LiuH W, XuS, WangP, HuX X, ZhangJ, YuanL, ZhangX B, TanW. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy. Chemical Communications (Cambridge), 2016, 52( 83): 12330– 12333

DOI

65
LiuY, MengF, HeL, YuX, LinW. Fluorescence behavior of a unique two-photon fluorescent probe in aggregate and solution states and highly sensitive detection of RNA in water solution and living systems. Chemical Communications (Cambridge), 2016, 52( 57): 8838– 8841

DOI

66
MaoZ, FengW, LiZ, ZengL, LvW, LiuZ. Nir in, far-red out: developing a two-photon fluorescent probe for tracking nitric oxide in deep tissue. Chemical Science, 2016, 7( 8): 5230– 5235

67
KwonN, ChoM K, ParkS J, KimD, NamS J, CuiL, KimH M, YoonJ. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chemical Communications, 2017, 53( 3): 525– 528

DOI

68
ShinW S, HanJ, VerwilstP, KumarR, KimJ H, KimJ S. Cancer targeted enzymatic theranostic prodrug: precise diagnosis and chemotherapy. Bioconjugate Chemistry, 2016, 27( 5): 1419– 1426

DOI

69
KanedaN, NagataH, FurutaT, YokokuraT. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Research, 1990, 50( 6): 1715– 1720

70
BentleM S, BeyE A, DongY, ReinickeK E, BoothmanD A. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. Journal of Molecular Histology, 2006, 37( 5–7): 203– 218

DOI

71
BoothmanD A, TraskD K, PardeeA B. Inhibition of potentially lethal DNA damage repair in human tumor cells by beta-lapachone, an activator of topoisomerase I. Cancer Research, 1989, 49( 3): 605– 612

72
PinkJ J, PlanchonS M, TagliarinoC, VarnesM E, SiegelD, BoothmanD A. NAD(P)H:quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. Journal of Biological Chemistry, 2000, 275( 8): 5416– 5424

DOI

73
PlanchonS M, PinkJ J, TagliarinoC, BornmannW G, VarnesM E, BoothmanD A. β-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Experimental Cell Research, 2001, 267( 1): 95– 106

DOI

74
OughM, LewisA, BeyE A, GaoJ, RitchieJ M, BornmannW, BoothmanD A, OberleyL W, CullenJ J. Efficacy of β-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biology & Therapy, 2005, 4( 1): 95– 102

DOI

75
BegM S, HuangX, SilversM A, GerberD E, BolluytJ, SarodeV, FattahF, DeberardinisR J, MerrittM E, XieX J, LeffR, LaheruD, BoothmanD A. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. Journal of Surgical Oncology, 2017, 116( 1): 83– 88

DOI

76
ZadaS, HwangJ S, AhmedM, LaiT H, PhamT M, KimD H, KimD R. Protein kinase a activation by beta-lapachone is associated with apoptotic cell death in NQO1overexpressing breast cancer cells. Oncology Reports, 2019, 42( 4): 1621– 1630

77
SongC W, ChaeJ J, ChoiE K, HwangT S, KimC, LimB U, ParkH J. Anti-cancer effect of bio-reductive drug β-lapachon is enhanced by activating NQO1 with heat shock. International Journal of Hyperthermia, 2008, 24( 2): 161– 169

DOI

78
ParkH J ChoiE K ChoiJ AhnK J KimE J JiI M KookY H AhnS D WilliamsB GriffinR BoothmanD A LeeC K SongC W. Heat-induced up-regulation of NAD(P)H:quinone oxidoreductase potentiates anticancer effects of β-lapachone . Clinical Cancer Research, 2005, 11(24 Pt 1): 8866- 8871

79
SuzukiM, AmanoM, ChoiJ, ParkH J, WilliamsB W, OnoK, SongC W. Synergistic effects of radiation and β-lapachone in DU-145 human prostate cancer cells in vitro. Radiation Research, 2006, 165( 5): 525– 531

DOI

80
ChoiE K, TeraiK, JiI M, KookY H, ParkK H, OhE T, GriffinR J, LimB U, KimJ S, LeeD S, BoothmanD A, LorenM, SongC W, ParkH J. Upregulation of NAD(P)H:Quinone oxidoreductase by radiation potentiates the effect of bioreductive β-lapachone on cancer cells. Neoplasia, 2007, 9( 8): 634– 642

DOI

81
LiL S, ReddyS, LinZ H, LiuS, ParkH, ChunS G, BornmannW G, ThibodeauxJ, YanJ, ChakrabartiG, XieX J, SumerB D, BoothmanD A, YordyJ S. NQO1-mediated tumor-selective lethality and radiosensitization for head and neck cancer. Molecular Cancer Therapeutics, 2016, 15( 7): 1757– 1767

DOI

82
LambertiM J, VittarN B, Da Silva FdeC, FerreiraV F, RivarolaV A. Synergistic enhancement of antitumor effect of β-lapachone by photodynamic induction of quinone oxidoreductase (NQO1). Phytomedicine, 2013, 20( 11): 1007– 1012

DOI

83
LambertiM J, Morales VasconsueloA B, ChiaramelloM, FerreiraV F, Macedo OliveiraM, Baptista FerreiraS, RivarolaV A, Rumie VittarN B. NQO1 induction mediated by photodynamic therapy synergizes with β-lapachone-halogenated derivative against melanoma. Biomedicine and Pharmacotherapy, 2018, 108 : 1553– 1564

DOI

84
NasongklaN, WiedmannA F, BrueningA, BemanM, RayD, BornmannW G, BoothmanD A, GaoJ. Enhancement of solubility and bioavailability of β-lapachone using cyclodextrin inclusion complexes. Pharmaceutical Research, 2003, 20( 10): 1626– 1633

DOI

85
BlancoE, BeyE A, KhemtongC, YangS G, Setti-GuthiJ, ChenH, KessingerC W, CarnevaleK A, BornmannW G, BoothmanD A, GaoJ. β-Lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Research, 2010, 70( 10): 3896– 3904

DOI

86
ZhangD, YangJ, GuanJ, YangB, ZhangS, SunM, YangR, ZhangT, ZhangR, KanQ, ZhangH, HeZ, ShangL, SunJ. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomaterials Science, 2018, 6( 9): 2360– 2374

DOI

87
LiM, ZhaoL, ZhangT, ShuY, HeZ, MaY, LiuD, WangY. Redox-sensitive prodrug nanoassemblies based on linoleic acid-modified docetaxel to resist breast cancers. Acta Pharmaceutica Sinica. B, 2019, 9( 2): 421– 432

DOI

88
WangK, YangB, YeH, ZhangX, SongH, WangX, LiN, WeiL, WangY, ZhangH, KanQ, HeZ, WangD, SunJ. Self-strengthened oxidation-responsive bioactivating prodrug nanosystem with sequential and synergistically facilitated drug release for treatment of breast cancer. ACS Applied Materials & Interfaces, 2019, 11( 21): 18914– 18922

DOI

89
GanesanM, KanimozhiG, PradhapsinghB, KhanH A, AlhomidaA S, EkhzaimyA, BrindhaG R, PrasadN R. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomedicine and Pharmacotherapy, 2021, 139 : 111632

DOI

90
YanY, OchsC J, SuchG K, HeathJ K, NiceE C, CarusoF. Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. Advanced Materials, 2010, 22( 47): 5398– 5403

DOI

91
CheL, LiuZ, WangD, XuC, ZhangC, MengJ, ZhengJ, YuanH, ZhaoG, ZhouX. Computer-assisted engineering of programmed drug releasing multilayer nanomedicine via indomethacin-mediated ternary complex for therapy against a multidrug resistant tumor. Acta Biomaterialia, 2019, 97 : 461– 473

DOI

92
ChangN, ZhaoY, GeN, QianL. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Delivery, 2020, 27( 1): 1073– 1086

DOI

93
LiQ, HouW, LiM, YeH, LiH, WangZ. Ultrasound combined with core cross-linked nanosystem for enhancing penetration of doxorubicin prodrug/beta-lapachone into tumors. International Journal of Nanomedicine, 2020, 15 : 4825– 4845

DOI

94
YeM, HanY, TangJ, PiaoY, LiuX, ZhouZ, GaoJ, RaoJ, ShenY. A tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Advanced Materials, 2017, 29( 38): 1702342

DOI

95
TangZ, ZhangH, LiuY, NiD, ZhangH, ZhangJ, YaoZ, HeM, ShiJ, BuW. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Advanced Materials, 2017, 29( 47): 1701683

DOI

96
DaiY, YangZ, ChengS, WangZ, ZhangR, ZhuG, WangZ, YungB C, TianR, JacobsonO, XuC, NiQ, SongJ, SunX, NiuG, ChenX. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Advanced Materials, 2018, 30( 8): 1704877

DOI

97
HuoM, WangL, ChenY, ShiJ. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8( 1): 357

DOI

98
LiuM, XuY, ZhaoY, WangZ, ShiD. Hydroxyl radical-involved cancer therapy via fenton reactions. Frontiers of Chemical Science and Engineering, 2022, 16( 3): 345– 363

DOI

99
ZhangM, QinX, ZhaoZ, DuQ, LiQ, JiangY, LuanY. A self-amplifying nanodrug to manipulate the janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horizons, 2022, 7( 2): 198– 210

DOI

100
ChenZ, YinJ J, ZhouY T, ZhangY, SongL, SongM, HuS, GuN. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano, 2012, 6( 5): 4001– 4012

DOI

101
GaoL, ZhuangJ, NieL, ZhangJ, ZhangY, GuN, WangT, FengJ, YangD, PerrettS, YanX. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2( 9): 577– 583

DOI

102
ChenQ, ZhouJ, ChenZ, LuoQ, XuJ, SongG. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11( 34): 30551– 30565

DOI

103
TianH, ZhangM, JinG, JiangY, LuanY. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. Journal of Colloid and Interface Science, 2021, 587 : 358– 366

DOI

104
PeerD, KarpJ M, HongS, FarokhzadO C, MargalitR, LangerR. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2( 12): 751– 760

DOI

105
ConnorE E, MwamukaJ, GoleA, MurphyC J, WyattM D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1( 3): 325– 327

DOI

106
HanG, GhoshP, RotelloV M. Functionalized gold nanoparticles for drug delivery. Nanomedicine, 2007, 2( 1): 113– 123

DOI

107
JeongS Y, ParkS J, YoonS M, JungJ, WooH N, YiS L, SongS Y, ParkH J, KimC, LeeJ S, LeeJ S, ChoiE K. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization. Journal of Controlled Release, 2009, 139( 3): 239– 245

DOI

108
BeyE A, BentleM S, ReinickeK E, DongY, YangC R, GirardL, MinnaJ D, BornmannW G, GaoJ, BoothmanD A. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104( 28): 11832– 11837

DOI

109
HuangX, MoteaE A, MooreZ R, YaoJ, DongY, ChakrabartiG, KilgoreJ A, SilversM A, PatidarP L, CholkaA, FattahF, ChaY, AndersonG G, KuskoR, PeytonM, YanJ, XieX J, SarodeV, WilliamsN S, MinnaJ D, BegM, GerberD E, BeyE A, BoothmanD A. Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors. Cancer Cell, 2016, 30( 6): 940– 952

DOI

110
ZhouL, ChenJ, SunY, ChaiK, ZhuZ, WangC, ChenM, HanW, HuX, LiR, YaoT, LiH, DongC, ShiS. A self-amplified nanocatalytic system for achieving “1 + 1 + 1 > 3” chemodynamic therapy on triple negative breast cancer. Journal of Nanobiotechnology, 2021, 19( 1): 261

DOI

111
ZhangL, ChenZ, YangK, LiuC, GaoJ, QianF. β-Lapachone and paclitaxel combination micelles with improved drug encapsulation and therapeutic synergy as novel nanotherapeutics for NQO1-targeted cancer therapy. Molecular Pharmaceutics, 2015, 12( 11): 3999– 4010

DOI

112
LiX, JiaX, NiuH. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. International Journal of Nanomedicine, 2018, 13 : 4107– 4119

DOI

113
DongX, LiuH J, FengH Y, YangS C, LiuX L, LaiX, LuQ, LovellJ F, ChenH Z, FangC. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion. Nano Letters, 2019, 19( 2): 997– 1008

DOI

114
ChuC, LyuX, WangZ, JinH, LuS, XingD, HuX. Cocktail polyprodrug nanoparticles concurrently release cisplatin and peroxynitrite-generating nitric oxide in cisplatin-resistant cancers. Chemical Engineering Journal, 2020, 402 : 126125

DOI

115
ZhangK, XuH, JiaX, ChenY, MaM, SunL, ChenH. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10( 12): 10816– 10828

DOI

116
WanM, ChenH, WangQ, NiuQ, XuP, YuY, ZhuT, MaoC, ShenJ. Bio-inspired nitric-oxide-driven nanomotor. Nature Communications, 2019, 10( 1): 966

DOI

117
QinL, GaoH. The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian Journal of Pharmaceutical Sciences, 2019, 14( 4): 380– 390

DOI

118
VongL B, NagasakiY. Nitric oxide nano-delivery systems for cancer therapeutics: advances and challenges. Antioxidants, 2020, 9( 9): 791

DOI

119
AnJ, HuY G, LiC, HouX L, ChengK, ZhangB, ZhangR Y, LiD Y, LiuS J, LiuB, ZhuD, ZhaoY D. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials, 2020, 230 : 119636

DOI

120
YuanZ, LinC, HeY, TaoB, ChenM, ZhangJ, LiuP, CaiK. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano, 2020, 14( 3): 3546– 3562

DOI

121
ShiM, ZhangJ, WangY, PengC, HuH, QiaoM, ZhaoX, ChenD. Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials, 2022, 283 : 121448

DOI

122
LeeJ, OhE T, YoonH, KimC W, HanY, SongJ, JangH, ParkH J, KimC. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale, 2017, 9( 20): 6901– 6909

DOI

123
GayamS R, VenkatesanP, SungY M, SungS Y, HuS H, HsuH Y, WuS P. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale, 2016, 8( 24): 12307– 12317

DOI

Outlines

/