Frontiers of Chemical Science and Engineering >
Reductive amination of n-hexanol to n-hexylamine over Ni–Ce/γ-Al2O3 catalysts
Received date: 05 Jan 2022
Accepted date: 02 May 2022
Published date: 15 Jan 2023
Copyright
The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines. Herein, cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hexylamine. It was found that the activity of the Ni/γ-Al2O3 catalyst is significantly improved by doping an appropriate amount of cerium. The presence of cerium effectively inhibits the agglomeration of nickel particle, resulting in better Ni dispersion. As Ni particle size plays critical role on the catalytic activity, higher turnover frequency of n-hexanol amination was achieved. Cerium doping also improves the reduction ability of nickel and enhances the interactions between Ni and the catalyst support. More weak acid sites were also found in those cerium doped catalysts, which promote another key step—ammonia dissociative adsorption in this reaction system. The overall synergy of Ni nanoparticles and acid sites of this Ni–Ce/γ-Al2O3 catalyst boosts its superior catalytic performance in the amination of n-hexanol.
Pengfei Li , Huijiang Huang , Zheng Wang , Ziying Hong , Yan Xu , Yujun Zhao . Reductive amination of n-hexanol to n-hexylamine over Ni–Ce/γ-Al2O3 catalysts[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(1) : 82 -92 . DOI: 10.1007/s11705-022-2181-z
1 |
HayesK. Industrial process for manufacturing amines. Applied Catalysis A: General, 2001, 221( 1–2): 187– 195
|
2 |
WolfeJ P, WagawS, MarcouxJ F, BuchwaldS L. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 1998, 31( 12): 805– 818
|
3 |
OrlandiM, BrennaD, HarmsR, JostS, BenagliaM. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Organic Process Research & Development, 2018, 22( 4): 430– 445
|
4 |
ZhangD, TaoL, WangQ, WangT. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer, 2016, 82 : 114– 120
|
5 |
BernoudE, LeporiC, MellahM, SchulzE, HannedoucheJ. Recent advances in metal free- and late transition metal-catalysed hydroamination of unactivated alkenes. Catalysis Science & Technology, 2015, 5( 4): 2017– 2037
|
6 |
WenJ B, YouK Y, ChenM J, JianJ, ZhaoF F, LiuP L, AiQ H, LuoH A. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 654– 665
|
7 |
LiangG, WangA, LiL, XuG, YanN, ZhangT. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angewandte Chemie International Edition, 2017, 56( 11): 3050– 3054
|
8 |
SchwoeglerE J, AdkinsH. Preparation of certain amines. Journal of the American Chemical Society, 1939, 61( 12): 3499– 3502
|
9 |
Pera-TitusM, ShiF. Catalytic amination of biomass-based alcohols. ChemSusChem, 2014, 7( 3): 720– 722
|
10 |
HoC R, DefalqueV, ZhengS, BellA T. Propanol amination over supported nickel catalysts: reaction mechanism and role of the support. ACS Catalysis, 2019, 9( 4): 2931– 2939
|
11 |
GuillenaG, RamonD J, YusM. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chemical Reviews, 2010, 110( 3): 1611– 1641
|
12 |
VeefkindV A, LercherJ A. On the elementary steps of acid zeolite catalyzed amination of light alcohols. Applied Catalysis A: General, 1999, 181( 2): 245– 255
|
13 |
LiangG, ZhouY, ZhaoJ, KhodakovA Y, OrdomskyV V. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles. ACS Catalysis, 2018, 8( 12): 11226– 11234
|
14 |
FangL, YanZ, VitsK, SouthwardB, Pera-TitusM. Nanoceria-promoted low Pd–Ni catalyst for the synthesis of secondary amines from aliphatic alcohols and ammonia. Catalysis Science & Technology, 2019, 9( 5): 1215– 1230
|
15 |
YueC J, DiK, GuL P, ZhangZ W, DingL L. Selective amination of 1,2-propanediol over Co/La3O4 catalyst prepared by liquid-phase reduction. Molecular Catalysis, 2019, 477 : 110539
|
16 |
ChoJ H, ParkJ H, ChangT S, KimJ E, ShinC H. Reductive amination of 2-propanol to monoisopropylamine over Ni/γ-Al2O3 catalysts. Catalysis Letters, 2013, 143( 12): 1319– 1327
|
17 |
JvX, SunS, ZhangQ, DuM, WangL, WangB. Efficient and mild reductive amination of carbonyl compounds catalysed by dual-function palladium nanoparticles. ACS Sustainable Chemistry & Engineering, 2020, 8( 3): 1618– 1626
|
18 |
YanZ, TomerA, PerrusselG, OusmaneM, KatryniokB, DumeignilF, PonchelA, LiebensA, Pera-TitusM. Pd/CeO2“H2 pump” for the direct amination of alcohols. ChemCatChem, 2016, 8( 21): 3347– 3352
|
19 |
ZhangJ, KongL, ChenY, HuangH, ZhangH, YaoY, XuY, XuY, WangS, MaX, ZhaoY. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 666– 678
|
20 |
PanD, ZhouJ H, PengB, WangS P, ZhaoY J, MaX B. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16( 3): 397– 407
|
21 |
LiS, WenM, ChenH, NiZ, XuJ, ShenJ. Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. Journal of Catalysis, 2017, 350 : 141– 148
|
22 |
HongE, BangS, ChoJ H, JungK D, ShinC H. Reductive amination of isopropanol to monoisopropylamine over Ni–Fe/γ-Al2O3 catalysts: synergetic effect of Ni–Fe alloy formation. Applied Catalysis A: General, 2017, 542 : 146– 153
|
23 |
MaZ, WangJ, LiJ, WangN, AnC, SunL. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: effect of cerium addition. Fuel Processing Technology, 2014, 128 : 283– 288
|
24 |
GonzalezJ J, Da Costa-SerraJ F, ChicaA. Biogas dry reforming over Ni–Ce catalyst supported on nanofibered alumina. International Journal of Hydrogen Energy, 2020, 45( 40): 20568– 20581
|
25 |
LiuH, ZouX, WangX, LuX, DingW. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. Journal of Natural Gas Chemistry, 2012, 21( 6): 703– 707
|
26 |
TomerA, ZhenY, PonchelA, Pera-TitusM. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. Journal of Catalysis, 2017, 356 : 133– 146
|
27 |
ChengD, WangZ, XiaY, WangY, ZhangW, ZhuW. Catalytic amination of diethylene glycol with tertiarybutylamine over Ni−Al2O3 catalysts with different Ni/Al ratios. RSC Advances, 2016, 6( 104): 102373– 102380
|
28 |
ShimizuK I, KonK, OnoderaW, YamazakiH, KondoJ N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catalysis, 2013, 3( 1): 112– 117
|
29 |
ZielinskiJ. Morphology of nickel/alumina catalysts. Journal of Catalysis, 1982, 76( 1): 157– 163
|
30 |
LiX, TianJ, LiuH, TangC, XiaC, ChenJ, HuangZ. Effective synthesis of 5-amino-1-pentanol by reductive amination of biomass-derived 2-hydroxytetrahydropyran over supported Ni catalysts. Chinese Journal of Catalysis, 2020, 41( 4): 631– 641
|
31 |
ChrysostomouD, FlowersJ, ZaeraF. The thermal chemistry of ammonia on Ni(110). Surface Science, 1999, 439( 1-3): 34– 48
|
32 |
SimaD, WuH, TianK, XieS, LiuY Q. Enhanced low temperature catalytic activity of Ni/Al–Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45( 16): 9342– 9352
|
/
〈 | 〉 |