RESEARCH ARTICLE

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix

  • Joseph Raj Xavier
Expand
  • Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai-602 105, India

Received date: 27 Jan 2022

Accepted date: 11 Apr 2022

Published date: 15 Jan 2023

Copyright

2022 Higher Education Press

Abstract

Newly synthesized functional nanoparticles, 3-amino-1,2,4-triazole (ATA)/SiO2–TiO2 were introduced to the polyurethane (PU) matrix. Electrochemical techniques were used to investigate the barrier properties of the synthesized PU–ATA/SiO2–TiO2 nanocomposite coated steel specimen. In natural seawater, electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU–ATA/SiO2–TiO2 coated steel. The coating resistance (Rcoat) of PU–ATA/SiO2–TiO2 was determined to be 2956.90 kΩ·cm–2. The Rcoat of the PU–ATA/SiO2–TiO2 nanocomposite coating was found to be over 50% higher than the PU coating. The current measured along the scratched surface of the PU–ATA/SiO2–TiO2 coating was found to be very low (1.65 nA). The enhanced ATA/SiO2–TiO2 nanoparticles inhibited the entry of electrolytes into the coating interface, as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products. Water contact angle testing validated the hydrophobic nature of the PU–ATA/SiO2–TiO2 coating (θ = 115.4°). When the concentration of ATA/SiO2−TiO2 nanoparticles was 2 wt %, dynamic mechanical analysis revealed better mechanical properties. Therefore, the newly synthesised PU–ATA/SiO2–TiO2 nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO2–TiO2 nanoparticles to the polyurethane, which inhibited material degradation and aided in the prolongation of the coated steel’s life.

Cite this article

Joseph Raj Xavier . Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(1) : 1 -14 . DOI: 10.1007/s11705-022-2176-9

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2176-9 and is accessible for authorized users.
1
Ding W, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review. Frontiers of Chemical Science and Engineering, 2018, 12( 3): 564– 576

DOI

2
Mobin M, Aslam J, Alam R. Corrosion protection of poly(aniline-co-N-ethylaniline)/ZnO nanocomposite coating on mild steel. Arabian Journal for Science and Engineering, 2017, 42( 1): 209– 224

DOI

3
Raj X J, Nishimura T. Evaluation of the corrosion protection performance of epoxy-coated high manganese steel by SECM and EIS techniques. Journal of Failure Analysis and Prevention, 2016, 16( 3): 417– 426

DOI

4
Bhat S I, Ahmad S. Castor oil–TiO2 hyperbranched poly(ester amide) nanocomposite: a sustainable, green precursor-based anticorrosive nanocomposite coatings. Progress in Organic Coatings, 2018, 123 : 326– 336

DOI

5
Habib S, Fayyad E, Nawaz M, Khan A, Shakoor R A, Kahraman R, Abdullah A. Cerium dioxide nanoparticles as smart carriers for self-healing coatings nanomaterials. Nanomaterials, 2020, 10( 4): 791

DOI

6
Xavier J R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corrosion Methods and Materials, 2018, 65( 1): 38– 45

DOI

7
Yang D, Wang S, Zhong R, Liu W, Qiu X. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings. Frontiers of Chemical Science and Engineering, 2019, 13( 1): 59– 69

DOI

8
Xavier J R, Nallaiyan R. Application of EIS and SECM studies for investigation of anticorrosion properties of epoxy coatings containing ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Journal of Failure Analysis and Prevention, 2016, 16( 6): 1082– 1091

DOI

9
Pinho L, Rojas M, Mosquera M J. Mosquera. Ag–SiO2–TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Applied Catalysis B: Environmental , 2015, 178 : 144– 154

DOI

10
Yang J, Xu Y, Su C, Nie S, Li Z. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites. Frontiers of Chemical Science and Engineering, 2021, 15( 5): 1281– 1295

DOI

11
Chattopadhyay D K, Raju K V S N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, 32( 3): 352– 418

DOI

12
Xavier J R. Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Materials Science and Engineering B, 2020, 260 : 114639

DOI

13
Hasannejad H, Shahrabi T, Jafarian M. Synthesis and properties of high corrosion resistant Ni-cerium oxide nanocomposite coating. Materials and Corrosion, 2013, 64( 12): 1104– 1113

DOI

14
Xu Y, Petrovic Z, Das S, Wilkes G L. Morphology and properties of thermoplastic polyurethane with dangling chain in ricinoleate-based soft segment. Polymer, 2008, 49( 19): 4248– 4258

DOI

15
Teimouri A, Soltani N, Chermahini A N. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media. Frontiers of Chemical Science and Engineering, 2011, 5( 1): 43– 50

DOI

16
Montemor M F, Trabelsi W, Lamaka S V, Yasakau K A, Zheludkevich M L, Bastos A C, Ferreira M G S. The synergistic combination of bis-silane and CeO2–ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53( 20): 5913– 5922

DOI

17
Nguyen T A, Nguyen H, Nguyen T V, Thai H, Shi X. Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. Journal of Nanoscience and Nanotechnology, 2016, 16( 9): 9874– 9881

DOI

18
Xavier J R. Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel. Journal of Applied Polymer Science, 2020, 137( 5): 48323

DOI

19
Xavier J R. Investigation on the anticorrosion, adhesion and mechanical performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-MoO3 on mild steel. Journal of Adhesion Science and Technology, 2020, 34( 2): 115– 134

DOI

20
Erten Ü, Ünal H İ, Zor S, Atapek Ş H. Structural and electrochemical characterization of Zn–TiO2 and Zn–WO3 nanocomposite coatings electrodeposited on St 37 steel. Journal of Applied Electrochemistry, 2015, 45( 9): 991– 1003

DOI

21
Mannari V M, Massingill J L. Two-component high-solid polyurethane coating system based on soy polyols. Journal of Coatings Technology and Research, 2006, 3( 2): 151– 157

DOI

22
Fandi Z, Ameur N, Brahimi F T, Bedrane S, Bachir R. Photocatalytic and corrosion inhibitor performances of CeO2 nanoparticles decorated by noble metals: Au, Ag, Pt. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104346

DOI

23
Yeh J, Huang H, Chen C, Su W, Yu Y. Siloxane modifed epoxy resin-clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 2006, 200( 8): 2753– 2763

DOI

24
Alam M, Alandis N M, Zafar F, Sharmin E, Al-Mohammadi Y M. Polyurethane–TiO2 nanocomposite coatings from sunflower-oil-based amide diol as soft segment. Journal of Macromolecular Science: Part A, 2018, 55 : 698– 708

25
Davis A, Yeong Y H, Steele A, Bayer I S, Loth E. Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Applied Materials & Interfaces, 2014, 6( 12): 9272– 9279

DOI

26
Sung L P, Comer J, Forster A M, Hu H, Floryancic B, Brickweg L, Fernando R H. Scratch behavior of nano-alumina/polyurethane coatings. Journal of Coatings Technology and Research, 2008, 5( 4): 419– 430

DOI

27
Li S, Wang S, Du X, Wang H, Cheng X, Du Z. Waterborne polyurethane coating based on tannic acid functionalized Ce-MMT nanocomposites for the corrosion protection of carbon steel. Progress in Organic Coatings, 2022, 163 : 106613

DOI

28
Cambon J B, Esteban J, Ansart F, Bonino J P, Turq V, Santagneli S H, Santilli C V, Pulcinelli S H. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behaviour. Materials Research Bulletin, 2012, 47( 11): 3170– 3176

DOI

29
Xavier J R. Electrochemical and mechanical investigation of newly synthesized NiO–ZrO2 nanoparticle-grafted polyurethane nanocomposite coating on mild steel in chloride media. Journal of Materials Engineering and Performance, 2021, 30( 2): 1554– 1566

DOI

30
Xavier J R. Electrochemical and dynamic mechanical studies of newly synthesized polyurethane/SiO2–Al2O3 mixed oxide nanocomposite coated steel immersed in 3.5% NaCl solution. Surfaces and Interfaces, 2021, 22 : 100848

DOI

31
Qi D, Wu M, Yang L, Shao J, Baoet Y. Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix. Frontiers of Chemical Science and Engineering, 2008, 2 : 127– 134

32
Liu Y, Wang L, Zhang C, Zhang K, Liu G. A hollow porous Mn2O3 microcontainer for encapsulation and release of corrosion inhibitors. ECS Electrochemistry Letters, 2013, 2( 10): 39– 42

DOI

33
Yang H T, Chen B M, Guo Z C, Liu H R, Zhang Y C, Huang H, Xu R D, Fu R C. Effects of current density on preparation and performance of Al/conductive coating/α-PbO2–CeO2–TiO2/β-PbO2–MnO2–WC–ZrO2 composite electrode materials. Transactions of Nonferrous Metals Society of China, 2014, 24( 10): 3394– 3404

DOI

34
Wang H, Xu J, Du X, Du Z, Cheng X, Wang H. A self-healing polyurethane-based composite coating with high strength and anti-corrosion properties for metal protection. Composites Part B: Engineering, 2021, 225 : 109273

DOI

35
Ibrahim M, Kannan K, Parangusan H, Eldeib S, Shehata O, Ismail M, Zarandah R, Sadasivuni K K. Enhanced corrosion protection of epoxy/ZnO–NiO nanocomposite coatings on steel. Coatings, 2020, 10( 8): 783

DOI

36
Cai Y, Quan X, Li G, Gao N. Anticorrosion and scale behaviors of nanostructured ZrO2–TiO2 coatings in simulated geothermal water. Industrial & Engineering Chemistry Research, 2016, 55( 44): 11480– 11494

DOI

37
Bhosale A K, Shinde P S, Tarwal N L, Pawar R C, Kadam P M, Patil P S. Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode. Electrochimica Acta, 2010, 55( 6): 1900– 1906

DOI

38
Iribarren J I, Armelin E, Liesa F, Casanovas J, Aleman C. On the use of conducting polymers to improve the resistance against corrosion of paints based on polyurethane resins. Materials and Corrosion, 2006, 57( 9): 683– 688

DOI

39
Wenzel R. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28( 8): 988– 994

DOI

40
Psarras G C, Siengchin S, Karahaliou P K, Georga S N, Krontiras C A, Karger-Kocsis J. Dielectric relaxation phenomena and dynamics in polyoxymethylene/polyurethane/alumina hybrid nanocomposites. Polymer International, 2011, 60( 12): 1715– 1721

DOI

41
Mathur V, Arya P K. Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Advanced Composites and Hybrid Materials, 2018, 1( 4): 741– 747

DOI

42
Wan C Y, Qiao X Y, Zhang Y, Zhang Y X. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polymer Testing, 2003, 22( 4): 453– 461

DOI

Outlines

/