RESEARCH ARTICLE

A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo andin vitro

  • Ahui Qin 1 ,
  • Yan Zhang 1 ,
  • Shuai Gong 1 ,
  • Mingxin Li 1 ,
  • Yu Gao 1 ,
  • Xu Xu 1 ,
  • Jie Song 2 ,
  • Zhonglong Wang , 1 ,
  • Shifa Wang , 1
Expand
  • 1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
  • 2. Department of Natural Sciences, University of Michigan-Flint, Flint, MI 48502, USA

Received date: 06 Nov 2021

Accepted date: 28 Mar 2022

Published date: 15 Jan 2023

Copyright

2022 Higher Education Press

Abstract

Hydrazine is extremely toxic and causes severe harm to human body. Herein, a novel fluorescent probe 4-oxo-2-styryl-4H-chromen-3-yl thiophene-2-carboxylate (FHT) was synthesized for detecting hydrazine by using natural cinnamaldehyde as starting material. This probe exhibited significantly enhanced fluorescence response towards hydrazine over various common metal ions, anions, and amine compounds. The detection limit of probe FHT for hydrazine was as low as 0.14 μmol·L–1, significantly lower than that of the threshold value of 0.312 μmol·L–1, imposed by the Environmental Protection Agency. Moreover, the proposed probe was able to detect hydrazine within wide pH (5–10) and linear detection ranges (0–110 μmol·L–1). This probe was employed for determining trace hydrazine in different environmental water samples. The probe FHT-loaded filter paper strips were able to conveniently detect hydrazine of low concentration through distinct naked-eye and fluorescent color changes. Importantly, the probe FHT with low cytotoxicity was successfully applied to visualize hydrazine in living Hela cells and zebrafish.

Cite this article

Ahui Qin , Yan Zhang , Shuai Gong , Mingxin Li , Yu Gao , Xu Xu , Jie Song , Zhonglong Wang , Shifa Wang . A novel flavonol-based colorimetric and turn-on fluorescent probe for rapid determination of hydrazine in real water samples and its bioimaging in vivo andin vitro[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(1) : 24 -33 . DOI: 10.1007/s11705-022-2171-1

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2171-1 and is accessible for authorized users.
1
Serov A, Kwak C. Direct hydrazine fuel cells: a review. Applied Catalysis B: Environmental, 2010, 98( 1-2): 1– 9

DOI

2
Zhang J Y, Wang H, Tian Y, Yan Y, Xue Q, He T, Liu H, Wang C, Chen Y, Xia B Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angewandte Chemie International Edition, 2018, 57( 26): 7649– 7653

DOI

3
Zhang T, Zhu L, Lin W. A near infrared ratiometric fluorescent probe with aggregation induced emission (AIE) characteristics for hydrazine detection in vitro and in vivo. Dyes and Pigments, 2021, 188 : 109177

DOI

4
Feng Z, Wang E, Huang S, Liu J. A bifunctional nanoporous Ni–Co–Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale, 2020, 12( 7): 4426– 4434

DOI

5
Wang G, Zhang C, He X, Li Z, Zhang X, Wang L, Fang B. Detection of hydrazine based on nano-Au deposited on porous-TiO2 film. Electrochimica Acta, 2010, 55( 24): 7204– 7210

DOI

6
Shi X, Yin C, Zhang Y, Wen Y, Huo F. A novel ratiometric and colorimetric fluorescent probe for hydrazine based on ring-opening reaction and its applications. Sensors and Actuators B: Chemical, 2019, 285 : 368– 374

DOI

7
Cui L, Peng Z, Ji C, Huang J, Huang D, Ma J, Zhang S, Qian X, Xu Y. Hydrazine detection in the gas state and aqueous solution based on the Gabriel mechanism and its imaging in living cells. Chemical Communications (Cambridge), 2014, 50( 12): 1485– 1487

DOI

8
Shyamaprosad G, Sangita D, Krishnendu A, Bholanath P, Sukanya P, Subhra Kanti M, Sabyasachi S. A chemodosimeter for the ratiometric detection of hydrazine based on return of ESIPT and its application in live-cell imaging. Organic Letters, 2013, 15( 21): 5412– 5415

DOI

9
Zhao X X, Zhang J F, Liu W, Zhou S, Zhou Z Q, Xiao Y H, Xi G, Miao J Y, Zhao B X. A unique dansyl-based chromogenic chemosensor for rapid and ultrasensitive hydrazine detection. Journal of Materials Chemistry B, 2014, 2( 42): 7344– 7350

DOI

10
Ma J, Fan J, Li H, Yao Q, Xia J, Wang J, Peng X. Probing hydrazine with a near-infrared fluorescent chemodosimeter. Dyes and Pigments, 2017, 138 : 39– 46

DOI

11
Choudhary G, Hansen H. Human health perspective on environmental exposure to hydrazines: a review. Chemosphere, 1998, 37( 5): 801– 843

DOI

12
Liu J, Zhou W H, You T Y, Li F L, Wang E K, Dong S J. Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode. Analytical Chemistry, 1996, 68( 19): 3350– 3353

DOI

13
Liu J, Li Y, Jiang J, Huang X. C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Transactions (Cambridge, England), 2010, 39( 37): 8693– 8697

DOI

14
Bhutani H, Singh S, Vir S, Bhutani K K, Kumar R, Chakraborti A K, Jindal K C. LC and LC-MS study of stress decomposition behaviour of isoniazid and establishment of validated stability-indicating assay method. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43( 4): 1213– 1220

DOI

15
Zhou J, Shi R, Liu J, Wang R, Xu Y, Qian X. An ESIPT-based fluorescent probe for sensitive detection of hydrazine in aqueous solution. Organic & Biomolecular Chemistry, 2015, 13( 19): 5344– 5348

DOI

16
Mahapatra A K, Karmakar P, Manna S, Maiti K, Mandal D. Benzthiazole-derived chromogenic, fluorogenic and ratiometric probes for detection of hydrazine in environmental samples and living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334 : 1– 12

DOI

17
Shi X, Huo F, Chao J, Yin C. A ratiometric fluorescent probe for hydrazine based on novel cyclization mechanism and its application in living cells. Sensors and Actuators B: Chemical, 2018, 260 : 609– 616

DOI

18
Choi M G, Hwang J, Moon J O, Sung J, Chang S K. Hydrazine-selective chromogenic and fluorogenic probe based on levulinated coumarin. Organic Letters, 2011, 13( 19): 5260– 5263

DOI

19
Wu W N, Wu H, Wang Y, Mao X J, Zhao X L, Xu Z Q, Fan Y C, Xu Z H. A highly sensitive and selective off−on fluorescent chemosensor for hydrazine based on coumarin beta-diketone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 188 : 80– 84

DOI

20
Tiensomjitr K, Noorat R, Wechakorn K, Prabpai S, Suksen K, Kanjanasirirat P, Pewkliang Y, Borwornpinyo S, Kongsaeree P. A rhodol-based fluorescent chemosensor for hydrazine and its application in live cell bioimaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185 : 228– 233

DOI

21
Nandi S, Sahana A, Mandal S, Sengupta A, Chatterjee A, Safin D A, Babashkina M G, Tumanov N A, Filinchuk Y, Das D. Hydrazine selective dual signaling chemodosimetric probe in physiological conditions and its application in live cells. Analytica Chimica Acta, 2015, 893 : 84– 90

DOI

22
Zheng X X, Wang S Q, Wang H Y, Zhang R R, Liu J T, Zhao B X. Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 138 : 247– 251

DOI

23
Wang L, Liu F Y, Liu H Y, Dong Y S, Liu T Q, Liu J F, Yao Y W, Wan X J. A novel pyrazoline-based fluorescent probe for detection of hydrazine in aqueous solution and gas state and its imaging in living cells. Sensors and Actuators B: Chemical, 2016, 229 : 441– 452

DOI

24
Lin Y D, Chow T J. A pyridomethene-BF2 complex-based chemosensor for detection of hydrazine. RSC Advances, 2013, 3( 39): 17924– 17929

DOI

25
Goswami S, Paul S, Manna A. A highly reactive (< 1 min) ratiometric chemodosimeter for selective “naked eye” and fluorogenic detection of hydrazine. RSC Advances, 2013, 3( 41): 18872– 18877

DOI

26
Goswami S, Aich K, Das S, Basu Roy S, Pakhira B, Sarkar S. A reaction based colorimetric as well as fluorescence ‘turn on’ probe for the rapid detection of hydrazine. RSC Advances, 2014, 4( 27): 14210– 14214

DOI

27
Qu D Y, Chen J L, Di B. A fluorescence “switch-on” approach to detect hydrazine in aqueous solution at neutral pH. Analytical Methods, 2014, 6( 13): 4705– 4709

DOI

28
Qin T, Liu B, Xu Z, Yao G, Xu H, Zhao C. Flavonol-based small-molecule fluorescent probes. Sensors and Actuators B: Chemical, 2021, 336 : 129718

DOI

29
Deng S, Wu J, Zhang K, Li Y, Yang L, Hu D, Jin Y, Hao Y, Wang X, Liu Y, Liu H, Chen Y, Xie M. Fluorescence resonance energy transfer-mediated immunosensor based on design and synthesis of the substrate of amp cephalosporinase for biosensing. Analytical Chemistry, 2019, 91( 17): 11316– 11323

DOI

30
Nguyen K H, Hao Y, Chen W, Zhang Y, Xu M, Yang M, Liu Y N. Recent progress in the development of fluorescent probes for hydrazine. Luminescence, 2018, 33( 5): 816– 836

DOI

31
Carrillo J T, Borthakur D. Do uncommon plant phenolic compounds have uncommon properties? A mini review on novel flavonoids. Journal of Bioresources and Bioproducts, 2021, 6 : 279– 291

32
Wang D, Fan X, Sun S, Du S, Li H, Zhu J, Tang Y, Chang M, Xu Y. Substituent effect: a new strategy to construct a ratiometric fluorescent probe for detection of Al3+ and imaging in vivo. Sensors and Actuators B: Chemical, 2018, 264 : 304– 311

DOI

33
Dong L Y, Wang L Y, Wang X F, Liu Y, Liu H L, Xie M X. Development of fluorescent FRET probe for determination of glucose based on β-cyclodextrin modified ZnS-quantum dots and natural pigment 3-hydroxyflavone. Dyes and Pigments, 2016, 128 : 170– 178

DOI

34
Ghosh D, Batuta S, Das S, Begum N A, Mandal D. Proton transfer dynamics of 4′-N,N-dimethylamino-3-hydroxyflavone observed in hydrogen-bonding solvents and aqueous micelles. Journal of Physical Chemistry B, 2015, 119( 17): 5650– 5661

DOI

35
Jin X, Liu C, Wang X, Huang H, Zhang X, Zhu H. A flavone-based ESIPT fluorescent sensor for detection of N2H4 in aqueous solution and gas state and its imaging in living cells. Sensors and Actuators B: Chemical, 2015, 216 : 141– 149

DOI

36
Zhang X, Shi C, Ji P, Jin X, Liu J, Zhu H. A red-emitting fluorescent probe based on flavone for hydrazine detection and its application in aqueous solution. Analytical Methods, 2016, 8( 10): 2267– 2273

DOI

37
Xavier J C, de Almeida-Neto F W Q, Rocha J E, Freitas T S, Freitas P R, de Araújo A C J, da Silva P T, Nogueira C E S, Bandeira P N, Marinho M M. . Spectroscopic analysis by NMR, FT−Raman, ATR−FTIR, and UV−Vis, evaluation of antimicrobial activity, and in silico studies of chalcones derived from 2-hydroxyacetophenone. Journal of Molecular Structure, 2021, 1241 : 130647

DOI

38
Sedgwick A C, Wu L, Han H H, Bull S D, He X P, James T D, Sessler J L, Tang B Z, Tian H, Yoon J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 2018, 47( 23): 8842– 8880

DOI

Outlines

/