RESEARCH ARTICLE

Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application

  • Vishal Kandathil 1 ,
  • Akshay Moolakkil 1 ,
  • Pranav Kulkarni 1 ,
  • Alaap Kumizhi Veetil 1 ,
  • Manjunatha Kempasiddaiah 1 ,
  • Sasidhar Balappa Somappa 2 ,
  • R. Geetha Balakrishna 1 ,
  • Siddappa A. Patil , 1
Expand
  • 1. Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
  • 2. Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India

Received date: 23 Oct 2021

Accepted date: 12 Jan 2022

Published date: 17 Oct 2022

Copyright

2022 Higher Education Press

Abstract

The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.

Cite this article

Vishal Kandathil , Akshay Moolakkil , Pranav Kulkarni , Alaap Kumizhi Veetil , Manjunatha Kempasiddaiah , Sasidhar Balappa Somappa , R. Geetha Balakrishna , Siddappa A. Patil . Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic application[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(10) : 1514 -1525 . DOI: 10.1007/s11705-022-2158-y

Acknowledgements

The authors thank DST-SERB, India (YSS/2015/000010), DST-Nanomission, India (SR/NM/NS-20/2014), and Jain University, India for financial support.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2158-y and is accessible for authorized users.
1
García-Serna J, Pérez-Barrigón L, Cocero M. New trends for design towards sustainability in chemical engineering: green engineering. Chemical Engineering Journal, 2007, 133( 1-3): 7–30

DOI

2
Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catalysis Today, 2002, 75( 1-4): 3–15

DOI

3
Clarke C J, Tu W C, Levers O, Brohl A, Hallett J P. Green and sustainable solvents in chemical processes. Chemical Reviews, 2018, 118( 2): 747–800

DOI

4
Descorme C, Gallezot P, Geantet C, George C. Heterogeneous catalysis: a key tool toward sustainability. ChemCatChem, 2012, 4( 12): 1897–1906

DOI

5
Di Monte R, Kašpar J. Heterogeneous environmental catalysis—a gentle art: CeO2−ZrO2 mixed oxides as a case history. Catalysis Today, 2005, 100( 1-2): 27–35

DOI

6
Beletskaya I, Tyurin V. Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 2010, 15( 7): 4792–4814

DOI

7
Polshettiwar V, Varma R S. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12( 5): 743–754

DOI

8
Beletskaya I P, Kustov L M. Catalysis as an important tool of green chemistry. Russian Chemical Reviews, 2010, 79( 6): 441–461

DOI

9
Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36( 3): 159–175

DOI

10
Antolini E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88( 1-2): 1–24

DOI

11
Julkapli N M, Bagheri S. Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 2015, 40( 2): 948–979

DOI

12
Houghton R, Hall F, Goetz S J. Importance of biomass in the global carbon cycle. Journal of Geophysical Research. Biogeosciences, 2009, 114( G2): 1–13

13
Bhuvaneshwari S, Hettiarachchi H, Meegoda J N. Crop residue burning in India: policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 2019, 16( 5): 832

DOI

14
Lim J S, Manan Z A, Alwi S R W, Hashim H. A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable & Sustainable Energy Reviews, 2012, 16( 5): 3084–3094

DOI

15
Singh R, Srivastava M, Shukla A. Environmental sustainability of bioethanol production from rice straw in India: a review. Renewable & Sustainable Energy Reviews, 2016, 54 : 202–216

DOI

16
Quignard F, Choplin A. Cellulose: a new bio-support for aqueous phase catalysts. Chemical Communications, 2001, ( 1): 21–22

DOI

17
Sekhar C P, Kalidhasan S, Rajesh V, Rajesh N. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 2009, 77( 6): 842–847

DOI

18
Kandathil V, Kempasiddaiah M, Sasidhar B, Patil S A. From agriculture residue to catalyst support; a green and sustainable cellulose-based dip catalyst for CC coupling and direct arylation. Carbohydrate Polymers, 2019, 223 : 115060

DOI

19
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40( 7): 3941–3994

DOI

20
Kandathil V, Veetil A K, Patra A, Moolakkil A, Kempasiddaiah M, Somappa S B, Rout C S, Patil S A. A green and sustainable cellulosic-carbon-shielded Pd-MNP hybrid material for catalysis and energy storage applications. Journal of Nanostructure in Chemistry, 2021, 11( 3): 395–407

DOI

21
Zhang Y, Hao N, Lin X, Nie S. Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydrate Polymers, 2020, 234 : 115888

DOI

22
Dumanlı A G, Windle A H. Carbon fibres from cellulosic precursors: a review. Journal of Materials Science, 2012, 47( 10): 4236–4250

DOI

23
Jayaprabha J, Brahmakumar M, Manilal V. Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. Journal of Natural Fibers, 2011, 8( 3): 149–160

DOI

24
Astruc D. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon−carbon coupling precatalysts: a unifying view. Inorganic Chemistry, 2007, 46( 6): 1884–1894

DOI

25
McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Frontiers of Chemical Science and Engineering, 2015, 9( 2): 142–153

DOI

26
Kandathil V, Kulkarni B, Siddiqa A, Kempasiddaiah M, Sasidhar B S, Patil S A. Immobilized N-heterocyclic carbene-palladium(II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling and reduction of nitroarenes. Catalysis Letters, 2020, 150( 2): 384–403

DOI

27
Foubelo F, Nájera C, Yus M. The Hiyama cross-coupling reaction: new discoveries. Chemical Record, 2016, 16( 6): 2521–2533

DOI

28
Maluenda I, Navarro O. Recent developments in the Suzuki–Miyaura reaction: 2010–2014. Molecules, 2015, 20( 5): 7528–7557

DOI

29
Kandathil V, Siddiqa A, Patra A, Kulkarni B, Kempasiddaiah M, Sasidhar B S, Patil S A, Rout C S, Patil S A. NHC-Pd complex heterogenized on graphene oxide for cross-coupling reactions and supercapacitor applications. Applied Organometallic Chemistry, 2020, 34( 11): e5924

DOI

30
Wu X F, Neumann H, Beller M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chemical Reviews, 2013, 113( 1): 1–35

DOI

31
Hatanaka Y, Hiyama T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino) sulfonium difluorotrimethylsilicate. Journal of Organic Chemistry, 1988, 53( 4): 918–920

DOI

32
Tamao K, Kobayashi K, Ito Y. Palladium-catalyzed cross-coupling reaction of alkenylalkoxysilanes with aryl and alkenyl halides in the presence of a fluoride ion. Tetrahedron Letters, 1989, 30( 44): 6051–6054

DOI

33
Ichii S, Hamasaka G, Uozumi Y. The Hiyama cross-coupling reaction at parts per million levels of Pd: in situ formation of highly active spirosilicates in glycol solvents. Chemistry, an Asian Journal, 2019, 14( 21): 3850–3854

DOI

34
Nozawa-Kumada K, Osawa S, Sasaki M, Chataigner I, Shigeno M, Kondo Y. Deprotonative silylation of aromatic C–H bonds mediated by a combination of trifluoromethyltrialkylsilane and fluoride. Journal of Organic Chemistry, 2017, 82( 18): 9487–9496

DOI

35
Kandathil V, Dateer R B, Sasidhar B, Patil S A, Patil S A. Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions. Catalysis Letters, 2018, 148( 6): 1562–1578

DOI

36
Li B, Qiao S, Zheng X, Yang X, Cui Z, Zhu S, Li Z Y, Liang Q Y. Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284 : 68–76

DOI

37
Grigoriev S, Millet P, Fateev V. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. Journal of Power Sources, 2008, 177( 2): 281–285

DOI

38
Grigoriev S, Mamat M, Dzhus K, Walker G, Millet P. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis. International Journal of Hydrogen Energy, 2011, 36( 6): 4143–4147

DOI

39
Mahesh K N, Balaji R, Dhathathreyan K. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. International Journal of Hydrogen Energy, 2016, 41( 1): 46–51

DOI

40
Ghasemi S, Hosseini S R, Nabipour S, Asen P. Palladium nanoparticles supported on graphene as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40( 46): 16184–16191

DOI

41
Huang Y X, Liu X W, Sun X F, Sheng G P, Zhang Y Y, Yan G M, Wang S G, Xu A W, Yu H Q. A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36( 4): 2773–2776

DOI

42
Vishal K, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. Magnetic nanoparticle-supported N-heterocyclic carbene-palladium(II): a convenient, efficient and recyclable catalyst for Suzuki−Miyaura cross-coupling reactions. Catalysis Letters, 2017, 147( 4): 900–918

DOI

43
Kandathil V, Fahlman B D, Sasidhar B S, Patil S A, Patil S A. A convenient, efficient and reusable N-heterocyclic carbene-palladium(II) based catalyst supported on magnetite for Suzuki−Miyaura and Mizoroki−Heck cross-coupling reactions. New Journal of Chemistry, 2017, 41( 17): 9531–9545

DOI

44
Gu J, Hu C, Zhang W, Dichiara A B. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Applied Catalysis B: Environmental, 2018, 237 : 482–490

DOI

45
Gu J, Dichiara A. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection. International Journal of Biological Macromolecules, 2020, 143 : 85–92

DOI

Outlines

/