REVIEW ARTICLE

Progress of three-dimensional macroporous bioactive glass for bone regeneration

  • Lijun JI , 1 ,
  • Yunfeng SI 1 ,
  • Ailing LI 2 ,
  • Wenjun WANG 1 ,
  • Dong QIU , 2 ,
  • Aiping ZHU 1
Expand
  • 1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
  • 2. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 10 May 2012

Accepted date: 04 Aug 2012

Published date: 05 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

Cite this article

Lijun JI , Yunfeng SI , Ailing LI , Wenjun WANG , Dong QIU , Aiping ZHU . Progress of three-dimensional macroporous bioactive glass for bone regeneration[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(4) : 470 -483 . DOI: 10.1007/s11705-012-1217-1

Acknowledgments

This project was Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
1
Hench L L, Thompson I. Twenty-first century challenges for biomaterials. Journal of the Royal Society, Interface, 2010, 7(Suppl_4): S379–S391

DOI

2
Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 2010, 6(8): 2874–2888

DOI

3
Boccaccini A R, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. Journal of the Royal Society, Interface, 2010, 7(Suppl_5): S581–S613

DOI

4
Gorustovich A A, Roether J A, Boccaccini A R. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Engineering Part B: Reviews, 2010, 16(2): 199–207

DOI

5
Hertz A, Bruce I J. Inorganic materials for bone repair or replacement applications. Nanomedicine; Nanotechnology, Biology, and Medicine, 2007, 2: 899–918

6
Hench L L, Xynos I D, Polak J M. Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science. Polymer Edition, 2004, 15(4): 543–562

DOI

7
Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117–141

DOI

8
Hulbert S F, Young F A, Mathews R S, Klawitter J J, Talbert C D, Stelling F H. Potential of ceramic materials as permanently skeletal prostheses. Journal of Biomedical Materials Research, 1970, 4(3): 433–456

DOI

9
Gauthier O, Bouler J M, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 1998, 19(1-3): 133–139

DOI

10
Hutmacher D W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science. Polymer Edition, 2001, 12(1): 107–124

DOI

11
Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Review of Medical Devices, 2007, 4(3): 405–418

DOI

12
Moroni L, De Wijn J R, Van Blitterswijk C A. Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science. Polymer Edition, 2008, 19(5): 543–572

DOI

13
Mourino V, Boccaccini A R. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 2010, 7(43): 209–227

DOI

14
Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences, 2009, 98(4): 1317–1375

DOI

15
Habraken W, Wolke J G C, Jansen J A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4-5): 234–248

DOI

16
Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4-5): 339–359

DOI

17
Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4-5): 249–262

DOI

18
Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements as bone drug delivery systems: a review. Journal of Controlled Release, 2006, 113(2): 102–110

DOI

19
Seeherman H, Wozney J M. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine & Growth Factor Reviews, 2005, 16(3): 329–345

DOI

20
Saltzman W M, Olbricht W L. Building drug delivery into tissue engineering. Nature Reviews. Drug Discovery, 2002, 1(3): 177–186

DOI

21
Stevens M M, George J H. Exploring and engineering the cell surface interface. Science, 2005, 310(5751): 1135–1138

DOI

22
Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413–3431

DOI

23
Li R, Clark A E, Hench L L. An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials, 1991, 2(4): 231–239

DOI

24
Jones J R, Lin S, Yue S, Lee P D, Hanna J V, Smith M E, Newport R J. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Journal of Engineering in Medicine,2010, 224(12): 1373–1387

DOI

25
Qiu D, Martin R A, Knowles J C, Smith M E, Newport R J. A comparative study of the structure of sodium borophosphates made by sol-gel and melt-quench methods. Journal of Non-Crystalline Solids, 2010, 356(9-10): 490–494

DOI

26
Li A, Wang D, Xiang J, Newport R J, Reinholdt M X, Mutin P H, Vantelon D, Bonhomme C, Smith M E, Laurencin D, Qiu D. Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids, 2011, 357(19-20): 3548–3555

DOI

27
Qiu D, Guerry P, Knowles J C, Smith M E, Newport R J. Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2008, 48(3): 378–383

DOI

28
Li A, Qiu D. Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses. Journal of Materials Science. Materials in Medicine, 2011, 22(12): 2685–2691

DOI

29
Brink M. The influence of alkali and alkaline earths on the working range for bioactive glasses. Journal of Biomedical Materials Research, 1997, 36(1): 109–117

DOI

30
Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia, 2007, 3(2): 199–208

DOI

31
Liu X, Rahaman M N, Fu Q A. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomaterialia, 2011, 7(1): 406–416

DOI

32
Vitale-Brovarone C, Di Nunzio S, Bretcanu O, Verne E. Macroporous glass-ceramic materials with bioactive properties. Journal of Materials Science. Materials in Medicine, 2004, 15(3): 209–217

DOI

33
Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M, Nezafati N. Sol-gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Advances in Applied Ceramics, 2009, 108(3): 155–161

DOI

34
Perez-Pariente J, Balas F, Roman J, Salinas A J, Vallet-Regi M. Influence of composition and surface characteristics on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses. Journal of Biomedical Materials Research, 1999, 47: 170–175

DOI

35
Salinas A J, Roman J, Vallet-Regi M, Oliveira J M, Correia R N, Fernandes M H. In vitro bioactivity of glass and glass-ceramics of the 3CaO center dot P2O5-CaO center dot SiO2-CaO center dot MgO center dot 2SiO(2) system. Biomaterials, 2000, 21: 251–257

DOI

36
Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Mater Sci Eng C Biomim Supramol Syst, 2009, 29(1): 335–340

DOI

37
Jones J R, Ehrenfried L M, Saravanapavan P, Hench L L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science. Materials in Medicine, 2006, 17(11): 989–996

DOI

38
Vitale-Brovarone C, Miola M, Alagna C B, Verne E. 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal, 2008, 137(1): 129–136

DOI

39
Courtheoux L, Lao J, Nedelec J M, Jallot E. Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. Journal of Physical Chemistry C, 2008, 112(35): 13663–13667

DOI

40
Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L. SiO2-P2O5-CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. Journal of Physical Chemistry C, 2009, 113(20): 8821–8828

DOI

41
Lao J, Jallot E, Nedelec J M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chemistry of Materials, 2008, 20(15): 4969–4973

DOI

42
Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S. A new glass-ceramic for bone-replacement-evaluation of its bonding to bone tissue. Journal of Biomedical Materials Research, 1985, 19(6): 685–698

DOI

43
Ono K, Yamamuro T, Nakamura T, Kokubo T. Mechanical-properties of bone after implantation of apatite wollastonite containing glass ceramic fibrin mixture. Journal of Biomedical Materials Research, 1990, 24(1): 47–63

DOI

44
Kawanabe K, Iida H, Matsusue Y, Nishimatsu H, Kasai R, Nakamura T. A-W glass ceramic as a bone substitute in cemented hip arthroplasty-15 hips followed 2-10 years. Acta Orthopaedica, 1998, 69(3): 237–242

DOI

45
Yang W, Zhou D, Yin G, Zheng C. Research and development of A-W bioactive glass ceramic. Journal of Biomedical Engineer, 2003, 20(3): 541–545 (in Chinese)

46
Yang W, Zhou D, Yin G, Chen H, Xiao B, Zhang Y. Study on a new type of apatite/wollastonite porous bioactive glass-ceramic. Journal of Biomedical Engineer, 2004, 21: 913–916 (in Chinese)

47
Shinzato S, Kobayashi M, Mousa W F, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Journal of Biomedical Materials Research, 2000, 51(2): 258–272

DOI

48
Juhasz J A, Best S M, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials, 2004, 25(6): 949–955

DOI

49
Van de Velde K, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 2002, 21(4): 433–342

DOI

50
Suyatma N E, Tighzert L, Copinet A, Coma V. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3950–3957

DOI

51
Wang Y, Qiu D, Cosgrove T, Denbow M L. A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids and Surfaces B: Biointerfaces, 2009, 70: 254–258

52
Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers, 1997, 34(1-2): 9–19

DOI

53
Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5): 1387–1408

DOI

54
Suyatma N E, Copinet A, Tighzert L, Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 2004, 12(1): 1–6

DOI

55
Sarasam A, Madihally S V. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials, 2005, 26(27): 5500–5508

DOI

56
Santos C, Seabra P, Veleirinho B, Delgadillo I, da Silva J A L. Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. European Polymer Journal, 2006, 42(12): 3277–3285

DOI

57
Costa E S, Barbosa-Stancioli E F, Mansur A A P, Vasconcelos W L, Mansur H S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 2009, 76(3): 472–481

DOI

58
Khan M, Ferdous S, Mustafa A I. Improvement of physico-mechanical properties of chitosan films by photocuring with acrylic monomers. Journal of Polymers and the Environment, 2005, 13(2): 193–201

DOI

59
Ji B, Gao H. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963–1990

DOI

60
Sionkowska A, Wisniewski M, Skopinska J, Poggi G F, Marsano E, Maxwell C A, Wess T J. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polymer Degradation & Stability, 2006, 91(12): 3026–3032

DOI

61
Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. Journal of Materials Science. Materials in Medicine, 2008, 19(3): 1297–1305

DOI

62
Sheu M T, Huang J C, Yeh G C, Ho H O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials, 2001, 22(13): 1713–1719

DOI

63
Yang L, Van der Werf K O, Fitie C F C, Bennink M L, Dijkstra P J, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophysical Journal, 2008, 94(6): 2204–2211

DOI

64
van der Rijt J A J, van der Werf K O, Bennink M L, Dijkstra P J, Feijen J. Micromechanical testing of individual collagen fibrils. Macromolecular Bioscience, 2006, 6(9): 697–702

DOI

65
Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. International Journal of Biological Macromolecules, 2010, 47(4): 570–577

DOI

66
Nam K, Kimura T, Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomaterials, 2007, 28(1): 1–8

DOI

67
Liu W, Deng C, McLaughlin C R, Fagerholm P, Lagali N S, Heyne B, Scaiano J C, Watsky M A, Kato Y, Munger R, Shinozaki N, Li F F, Griffith M. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30(8): 1551–1559

DOI

68
Yamauchi K, Takeuchi N, Kurimoto A, Tanabe T. Films of collagen crosslinked by S-S bonds: preparation and characterization. Biomaterials, 2001, 22(8): 855–863

DOI

69
Lim L T, Mine Y, Tung M A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. Journal of Food Science, 1999, 64(4): 616–622

DOI

70
Usta M, Piech D L, MacCrone R K, Hillig W B. Behavior and properties of neat and filled gelatins. Biomaterials, 2003, 24(1): 165–172

DOI

71
de Carvalho R A, Grosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 2004, 18(5): 717–722

DOI

72
Cao N, Fu Y, He J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 2007, 21(4): 575–584

DOI

73
Fakirov Z S. Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov A A, Mark J E, Kloczkowski A. Mechanical properties and transition temperatures of cross-linked oriented gelatin: 1.Static and dynamic mechanical properties of cross-linked gelatin. Colloid & Polymer Science, 1996, 274: 334–341

74
Santin M, Huang S J, Iannace S, Ambrosio L, Nicolais L, Peluso G. Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer. Biomaterials, 1996, 17(15): 1459–1467

DOI

75
Vemuri S. A screening technique to study the mechanical strength of gelatin formulations. Drug Development and Industrial Pharmacy, 2000, 26(10): 1115–1120

DOI

76
Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials, 1998, 19(24): 2335–2340

DOI

77
Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22(8): 763–768

DOI

78
Yakimets I, Wellner N, Smith A C, Wilson R H, Farhat I, Mitchell J. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer, 2005, 46(26): 12577–12585

DOI

79
Lee K Y, Shim J, Lee H G. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 2004, 56(2): 251–254

DOI

80
Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25(25): 5675–5680

DOI

81
Gómez-Guillén M C, Perez-Mateos M, Gomez-Estaca J, Lopez-Caballero E, Gimenez B, Montero P. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 2009, 20(1): 3–16

DOI

82
Arvanitoyannis I, Nakayama A, Aiba S I. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 1998, 36(2-3): 105–119

DOI

83
Arvanitoyannis I S, Nakayama A, Aiba S I. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymers, 1998, 37(4): 371–382

DOI

84
Park J W, Scott Whiteside W, Cho S Y. Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT- Food Science and Technology, 2008, 41(4): 692–700

DOI

85
Koob T J, Hernandez D J. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials, 2003, 24(7): 1285–1292

DOI

86
Karageorgiou V, Kaplan D. Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491

DOI

87
Jones J R, Ehrenfried L M, Hench L L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27(7): 964–973

DOI

88
FitzGerald V, Martin R A, Jones J R, Qiu D, Wetherall K M, Moss R M, Newport R J. Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. Journal of Biomedical Materials Research. Part A, 2009, 91A(1): 76–83

DOI

89
Wu Z Y, Hill R G, Yue S, Nightingale D, Lee P D, Jones J R. Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomaterialia, 2011, 7(4): 1807–1816

DOI

90
Chen Q Z Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425

DOI

91
Liu X, Huang W H, Fu H L, Yao A H, Wang D P, Pan H B, Lu W W. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. Journal of Materials Science. Materials in Medicine, 2009, 20(1): 365–372

DOI

92
Xue M, Feng D G, Li G D, Yang W Z, Zhou D L. Preparation of porous apatite-wollastonite bioactive glass ceramic (AW-GC) by dipping with polymer foams. Chinese Journal of Inorganic Chemistry, 2007, 23: 708–712

93
Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Applied Surface Science, 2008, 255(2): 505–508

DOI

94
Baino F, Verne E, Vitale-Brovarone C. 3-D high-strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Materials Science and Engineering: C, 2009, 29(6): 2055–2062

DOI

95
Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C. Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceramics International, 2011, 37(5): 1575–1585

DOI

96
Yan H, Zhang K, Blanford C F, Francis L F, Stein A. In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chemistry of Materials, 2001, 13(4): 1374–1382

DOI

97
Yan P H, Wang J Q, Ou J F, Li Z P, Lei Z Q, Yang S R. Synthesis and characterization of three-dimensional ordered mesoporous-macroporous bioactive glass. Materials Letters, 2010, 64(22): 2544–2547

DOI

98
Wei G F, Yan X X, Yi J, Zhao L Z, Zhou L, Wang Y H, Yu C Z. Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous and Mesoporous Materials, 2011, 143(1): 157–165

DOI

99
Hajiali H, Karbasi S, Hosseinalipour M, Rezaie H R. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. Journal of Materials Science, 2010, 21(7): 2125–2133

DOI

100
Ryszkowska J L, Auguscik M, Sheikh A, Boccaccini A R. Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Composites Science and Technology, 2010, 70(13): 1894–1908

DOI

101
Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International, 2010, 36(8): 2431–2439

DOI

102
Hong Z K, Reis R L, Mano J F. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4(5): 1297–1306

DOI

103
Barroca N, Daniel-da-Silva A L, Vilarinho P M, Fernandes M H V. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition. Acta Biomaterialia, 2010, 6(9): 3611–3620

DOI

104
Fabbri P, Cannillo V, Sola A, Dorigato A, Chiellini F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Composites Science and Technology, 2010, 70(13): 1869–1878

DOI

105
Minaberry Y, Jobbagy M. Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chemistry of Materials, 2011, 23(9): 2327–2332

DOI

106
Doiphode N D, Huang T S, Leu M C, Rahaman M N, Day D E. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. Journal of Materials Science. Materials in Medicine, 2011, 22(3): 515–523

DOI

107
Garcia A, Izquierdo-Barba I, Colilla M, de Laorden C L, Vallet-Regí M. Lopez de laorden C, Vallet-Regi M. Preparation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical meso-macroporosity. Acta Biomaterialia, 2011, 7(3): 1265–1273

DOI

108
Yun H S, Kim S E, Park E K. Bioactive glass-poly(epsilon-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Materials Science and Engineering: C, 2011, 31(2): 198–205

DOI

109
Valliant E M, Jones J R. Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter, 2011, 7(11): 5083–5095

DOI

110
Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith M E, Stevens M M, Jones J R. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Advanced Functional Materials, 2010, 20(22): 3835–3845

DOI

111
Pereira M M, Jones J R, Orefice R L, Hench L L. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science. 2005, 16(11): 1045–1050

DOI

112
Costa H S, Rocha M F, Andrade G I, Barbosa-Stancioli E F, Pereira M M, Orefice R L, Vasconcelos W L, Mansur H S. Sol-gel derived composite from bioactive glass-polyvinyl alcohol. Journal of Materials Science, 2008, 43(2): 494–502

DOI

113
Costa H S, Stancioli E F B, Pereira M M, Orefice R L, Mansur H S. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science, 2009, 20(2): 529–535

DOI

114
de Oliveira A A R, Ciminelli V, Dantas M S S, Mansur H S, Pereira M M. Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol-gel. Journal of Sol-Gel Science and Technology, 2008, 47(3): 335–346

DOI

115
Costa H S, Mansur A A P, Pereira M M, Mansur H S. Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: synthesis, characterization, cytocompatibility, and degradation. Journal of Nanomaterials, 2012, 2012: 1–16

DOI

116
Lin S, Ionescu C, Pike K J, Smith M E, Jones J R. Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. Journal of Materials Chemistry, 2009, 19(9): 1276–1282

DOI

Outlines

/