RESEARCH ARTICLE

Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm

  • Saravanan P ,
  • Muthuvelayudham R ,
  • Rajesh Kannan R ,
  • Viruthagiri T
Expand
  • Department of Chemical Engineering, Annamalai University, Annamalainagar-608002, Tamilnadu, India

Received date: 16 Jul 2012

Accepted date: 22 Oct 2012

Published date: 05 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The potential of Trichoderma reesei for cellulase production using pineapple waste as substrate has been investigated. A maximum cellulase activity of 9.23 U/mL is obtained under the optimum experimental conditions: pH (5.5), temperature (37.5°C), initial substrate concentration (3%), inoculum concentration (6.6 × 108CFU/mL), and culture time (6 days). Box-Behnken design (BBD) statistical tool and genetic algorithm (GA) are used to optimize the process parameters. The BBD study of linear and quadratic interactive effects of experimental variables on the desired response of cellulase activity showed that the second order polynomial is significant (R2 = 0.9414). The experimental cellulase activity under the optimal conditions identified by the BBD is 9.23 U/mL and that by GA is 6.98 U/mL. This result indicates that the BBD model gives better result than GA in the present case.

Cite this article

Saravanan P , Muthuvelayudham R , Rajesh Kannan R , Viruthagiri T . Optimization of cellulase production using Trichoderma reesei by RSM and comparison with genetic algorithm[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(4) : 443 -452 . DOI: 10.1007/s11705-012-1225-1

1
Aristidou A, Penttilä M. Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 2000, 11(2): 187–198

DOI PMID

2
Jeffries T W, Jin Y S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in Applied Microbiology, 2000, 47: 221–268

DOI PMID

3
Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 2001, 56(1–2): 17–34

DOI PMID

4
Alriksson B, Rose S H, van Zyl W H, Sjöde A, Nilvebrant N O, Jönsson L J. Cellulase production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Applied and Environmental Microbiology, 2009, 75(8): 2366–2374

DOI PMID

5
Mandels M, Hontz L, Nystrom J, Lee R Lynd I B. Enzymatic hydrolysis of waste cellulose. Biotechnology and Bioengineering, 1974, 16(11): 1471–1493

DOI PMID

6
Omojasola P, Folakemi J, Omowumi P, Ibiyemi S A. Cellulase production by some fungi cultured on pineapple waste. Nature and Science, 2008, 6: 64–79

7
Pranner J. Environmental Microbiology and Waste Utilization. London: Academic press, 1979, 67–69

8
Wang N S. Cellulose degradation. Bioengineering, 1979, 21: 725

9
Hammerschlag R. Ethanol’s energy return on investment: a survey of the literature 1990-present. Environmental Science & Technology, 2006, 40(6): 1744–1750

DOI PMID

10
Lynd L R, Laser M S, Bransby D, Dale B E, Davison B, Hamilton R, Himmel M, Keller M, McMillan J D, Sheehan J, Wyman C E. How biotech can transform biofuels. Nature Biotechnology, 2008, 26(2): 169–172

DOI PMID

11
Nazir A, Soni R, Saini H S, Kaur A, Chadha B S. Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Applied Biochemistry and Biotechnology, 2010, 162(2): 538–547

DOI PMID

12
Ojumu T V, Solomon B O, Betiku E, Layokun S K, Amigun B. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. African Journal of Biotechnology, 2003, 2: 150–152

13
Siddiqui K S, Saqib A A, Rashid M H, Rajoka M I. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger. Enzyme and Microbial Technology, 2000, 27(7): 467–474

DOI PMID

14
Jagtap S, Rao M. Purification and properties of a low molecular weight 1,4-beta-d-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochemical and Biophysical Research Communications, 2005, 329(1): 111–116

DOI PMID

15
Guo R, Ding M, Zhang S L, Xu G J, Zhao F K. Purification and characterization of two endo-1,4-glucanases from mollusca, ampullaria crossean. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2008, 178: 209–215

16
Thongekkaew J, Hiroko Ikeda H, Masaki K, Iefuji H. An acid and thermos table carboxymethyl cellulase from the yeast. Protein Expression and Purification, 2008, 60: 140–146

DOI PMID

17
Immanuel G, Dhanusha R, Prema P, Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal of Environmental Science and Technology, 2006, 3: 25–34

18
McCarthy J. Lignocellulose-degrading actinomycetes. FEMS Microbiology Letters, 1987, 46(2): 145–163

DOI

19
Mandels M, Weber J, Parizek R. Enhanced cellulase production by a mutant of Trichoderma viride. Applied Microbiology, 1971, 21(1): 152–154

PMID

20
Miettinen-Oinonen A, Suominen P. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and Environmental Microbiology, 2002, 68(8): 3956–3964

DOI PMID

21
Lee H, Kim B K, Lee Y J, Chung C H, Lee J W. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, bacillus subtilis. Enzyme and Microbial Technology, 2010, 48: 38–42

DOI

22
Schülein M. Protein engineering of cellulases. Biochimica et Biophysica Acta, 2000, 1543(2): 239–252

DOI PMID

23
Duenas R, Tengerdy R P, Gutierrez C M. Cellulase production by mixed fungi in solid-substrate fermentation of bagasse. World Journal of Microbiology & Biotechnology, 1995, 11: 333–337

DOI

24
Bisaria V, Ghose T K. S and, Ghose T K. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme and Microbial Technology, 1981, 3(2): 90–104

DOI

25
Gautam S P, Bundela P S, Pandey A K. Jamaluddin, Awasthi M K, Sarsaiya S. Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. International Journal of Environmental Science, 2010, 1: 656–669

26
Morton J F. Optimization of cellulase production by Aspergillus niger and Tricoderma viride using sugar cane waste. Fruits of Warm Climates, 1987, 18–28

27
Nigam J N. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 2000, 80(2): 189–193

DOI PMID

28
Tanaka K, Hilary Z D, Ishizaki A. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Journal of Bioscience and Bioengineering, 1999, 87(5): 642–646

DOI PMID

29
Khalil A. Application of central composite design based response surface methodology in parameter optimization and on cellulase production using agricultural waste. Bioresources, 2006, 1(2): 220–232

30
Krishna S H, Rao K C S, Babu J S, Reddy D S. Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess and Biosystems Engineering, 2000, 22(5): 467–470

31
Solomon B O, Amigun B, Betiku E, Ojumu T V, Layokun S K. Measurement of cellulase activities. African Journal of Biotechnology, 1999, 16: 61–68

32
Muthuvelayudham R, Viruthagiri T. Application of central composite design based response surface methodology in parameter optimization and on cellulase production using agricultural waste. International Journal of Chemical and Biological Engineering, 2010, 3: 97–104

33
Krishna S, Rao K C S, Babu J S, Reddy D S. Some new three level design for the study of quantitative variable. Bioprocess Engineering, 2000, 22: 467–470

34
Ghose T K. Waste management in pulp & paper industry waste pure. Applied Chemistry, 1987, 59: 257–268

DOI

35
Chang X G, Yang J, Wang D. Box-Behnken design: an alternative for the optimization of analytical methods. Chemical Product and Process Modeling, 2011, 6: Article 14

36
Arvind K, Prasad B, Mishra I M. Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Chemical Engineering & Technology, 2007, 30: 932–937

37
Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan S A. Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan Journal of Botany, 2005, 37(3): 739–748

38
Sherief A A, El-Tanash A B, Atia N. El-Tanash, Atia N. Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Research Journal of Microbiology, 2010, 5(3): 199–211

DOI

39
Jaradat Z, Dawagreh A, Ababneh Q, Saadoun I. Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2). Jordan Journal of Biological Sciences, 2008, 1(4): 141–146

40
Xia L M, Shen X L. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology, 2004, 91(3): 259–262

DOI PMID

41
Kashyap P, Sabu A, Pandey A, Szakacs G, Soccol C R. Extracellular L-glutaminase production by zygosaccharomyces rouxii under solidstate fermentation. Process Biochemistry, 2002, 38(3): 307–312

DOI

42
Ramachandran S, Patel A K, Nampoothiri K M, Francis F, Nagy V, Szakacs G, Pandey A. Coconut oil cake—a potential raw material for the production of alpha-amylase. Bioresource Technology, 2004, 93(2): 169–174

DOI PMID

43
Ray A K, Bairagi A, Ghosh K S, Sen S K. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica ET Piscatoria, 2007, 37: 47–53

44
Aishwarya V, Ishwarya M, Rajasekaran R, Ranjini R. Optimization of fermentation parameters and purification of cellulase with cellulose (paper) as substrate. Advance Biotech, 2011, 10(09): 40–42

45
Hao X C, Yu X B, Yan Z L. Optimization of the medium for the production of cellulase by the mutant Trichoderma reesei WX-112 using response surface methodology. Food Technology and Biotechnology, 2006, 44(1): 89–94

46
Nitin V, Mukesh C. Vivek. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state fermentation. Bioresources, 2011, 6(2): 1505–1519

47
Gautam S P, Bundela P S, Pandey A K, Khan J, Awasthi M K, Sarsaiya S. Jamaluddin Khan, Awasthi M K, Sarsaiya S. Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnology Research International, 2011, 2011: 1–8

DOI

Outlines

/