REVIEW ARTICLE

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

  • Hui LI ,
  • Yuanbin SHE ,
  • Tao WANG
Expand
  • Institute of Green Chemistry and Fine Chemicals, Beijing University of Technology, Beijing 100124, China

Received date: 10 Jan 2012

Accepted date: 20 Apr 2012

Published date: 05 Sep 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The latest progress and developments in catalysts for the oxidation of cyclohexane are reviewed. Catalytic systems for the oxidation of cyclohexane including metal supported, metal oxides, molecular sieves, metal substituted polyoxometalates, photocatalysts, organocatalysts, Gif systems, metal-organic catalysts and metalloporphyrins are discussed with a particular emphasis on metalloporphyrin catalytic systems. The advantages and disadvantages of these methods are summarized and analyzed. Finally, the development trends in the oxidation technology of cyclohexane are examined.

Cite this article

Hui LI , Yuanbin SHE , Tao WANG . Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(3) : 356 -368 . DOI: 10.1007/s11705-012-0903-3

Acknowledgments

This work was financed by the State Key Program of National Natural Science of China (Grant No. 21036009) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of the Beijing Municipality (PHR 200907105)
1
Labinger J A, Bercaw J E. Understanding and exploiting C–H bond activation. Nature, 2002, 417(6888): 507–514

DOI

2
Newhouse T, Baran P S. If C–H bonds could talk: selective C–H bond oxidation. Angewandte Chemie International Edition, 2011, 50(15): 3362–3374

DOI

3
Neuenschwander U, Turra N, Aellig C, Mania P, Hermans I. Understanding selective oxidations. Chimia, 2010, 64(4): 225–230

DOI

4
Jevtic R, Ramachandran P A, Dudukovic M P. Effect of oxygen on cyclohexane oxidation: a stirred tank study. Industrial & Engineering Chemistry Research, 2009, 48(17): 7986–7993

DOI

5
Guha S K, Obora Y, Ishihara D, Matsubara H, Ryu I, Ishii Y. Aerobic oxidation of cyclohexane using N-hydroxyphthalimide bearing fluoroalkyl chains. Advanced Synthesis & Catalysis, 2008, 350(9): 1323–1330

DOI

6
Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Study on reaction conditions of biomimetic synthesis of adipic acid from cyclohexane by catalytic oxidation with oxygen. Modern Chemical Industry, 2004, 24(6): 40–42 (in Chinese)

7
Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst. Organic Process Research & Development, 2004, 8(3): 418–420

DOI

8
Borah P, Datta A. Exfoliated VOPO4·2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane. Applied Catalysis A: General, 2010, 376(1-2): 19–24

DOI

9
Borah P, Ramesh A, Datta A. Dispersion of VOPO4·2H2O on different supports through exfoliation and their catalytic activity for the selective oxidation of cyclohexane. Catalysis Communications, 2010, 12(2): 110–115

DOI

10
Zhou L P, Xu J, Miao H, Wang F, Li X Q. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Applied Catalysis A: General, 2005, 292: 223–228

DOI

11
Yuan W W, Guo Z W, Jin H B. Synthesis of nanostructured iron oxide and its effect on the cyclohexane oxidation reaction. Journal of Beijing University of Chemical Technology, 2008, 35(4): 6–10 (in Chinese)

12
Tong J, Bo L, Li Z, Lei Z, Xia C. Magnetic CoFe2O4 nanocrystal: a novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. Journal of Molecular Catalysis A Chemical, 2009, 307(1-2): 58–63

DOI

13
Zhou L P, Yang G Y, Zhang W, Sun Z Q, Gao J, Miao H, Chen C, Ma H, Li X Q, Zhang Q H, Wang F, Tong X L, Xu J. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase. Progress in Natural Science, 2007, 17(9): 1003–1011

14
Li L, Ji W J, Au C T. Gold nanoparticles supported on mesoporous silica and their catalytic application. Progress in Chemistry, 2009, 21(9): 1742–1749 (in Chinese)

15
Zhao R, Ji D, Lv G M, Qian G, Yan L, Wang X L, Suo J S. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chemical Communications, 2004, (7): 904–905

DOI

16
Lu G M, Zhao R, Qian G, Qi Y X, Wang X L, Suo J S. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catalysis Letters, 2004, 97(3-4): 115–118

DOI

17
Gui J Z, Du J L, Liu D, Song L J, Zhang X T, Sun Z L. Synthesis and catalytic properties of Au-SBA-15 mesoporous zeolite. Industrial Catalysis, 2006, 14(5): 56–60 (in Chinese)

18
Xu L X, He C H, Zhu M Q, Wu K J, Lai Y L. Surface stabilization of gold by sol-gel post-modification of alumina support with silica for cyclohexane oxidation. Catalysis Communications, 2008, 9(5): 816–820

DOI

19
Xu L X, He C H, Zhu M Q, Fang S. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen. Catalysis Letters, 2007, 114(3-4): 202–205

DOI

20
Xu L X, He C H, Zhu M Q, Wu K J, Lai Y L. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catalysis Letters, 2007, 118(3-4): 248–253

DOI

21
Xu L X, He C H, Zhu M Q, Wu K J, Xu Y L, Zhao J. Cyclohexane oxidation over nano gold catalysts supported on zirconia-modified alumina. Journal of Chemical Engineering of Chinese Universities, 2009, 23(2): 309–313 (in Chinese)

22
Wang J Y, Zhao H, Zhang X J, Liu R J, Hu Y Q. Oxidation of cyclohexane catalyzed by TS-1 in ionic liquid with tert-butyl-hydroperoxide. Chinese Journal of Chemical Engineering, 2008, 16(3): 373–375

DOI

23
Selvam P, Paulose T A P. Transition-metal (Ti, V, Cr, Mn, Fe, Co, Cu) containing ordered nanoporous materials: novel heterogeneous catalysts for selective oxidation reactions. Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1758–1764

DOI

24
Li J, Li X, Shi Y, Mao D, Lu G. Selective oxidation of cyclohexane by oxygen in a solvent-free system over lanthanide-containing AlPO-5. Catalysis Letters, 2010, 137(3-4): 180–189

DOI

25
Arends I, Sheldon R A. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A, General, 2001, 212(1-2): 175–187

DOI

26
Sheldon R A, Wallau M, Arends I, Schuchardt U. Heterogeneous catalysts for liquid-phase oxidations: philosophers’ stones or trojan horses? Accounts of Chemical Research, 1998, 31(8): 485–493

DOI

27
Lee J K, Melsheimer J, Berndt S, Mestl G, Schlogl R, Kohler K. Transient responses of the local electronic and geometric structures of vanado-molybdo-phoshate catalysts H3+nPVnMo12-nO40 in selective oxidation. Applied Catalysis A, General, 2001, 214(1): 125–148

DOI

28
Simões M M Q, Conceição C M M, Gamelas J A F, Domingues P M D N, Cavaleiro A M V, Cavaleiro J A S, Ferrer-Correia A J V, Johnstone R A W. Keggin-type polyoxotungstates as catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide. Journal of Molecular Catalysis A Chemical, 1999, 144(3): 461–468

DOI

29
Jing S B, Guan J Q, Wang Z L, Zhu W C, Wang G J. Application of dawson-type molybdovanadophosphoric heteropolyacid to oxidation of cyclohexane. Journal of Jilin University, 2008, 46(2): 336–340 (Science Edition) (in Chinese)

30
Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chemical Reviews, 2002, 102(10): 3811–3836

DOI

31
Brusa M A, Grela M A. Photon flux and wavelength effects on the selectivity and product yields of the photocatalytic air oxidation of neat cyclohexane on TiO2 particles. Journal of Physical Chemistry B, 2005, 109(5): 1914–1918

DOI

32
Shimizu K, Murata Y, Satsuma A. Dicopper(II)-dioxygen complexes in Y zeolite for selective catalytic oxidation of cyclohexane under photoirradiation. Journal of Physical Chemistry C, 2007, 111(51): 19043–19051

DOI

33
Ishii Y, Sakaguchi S. A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst. Catalysis Surveys from Japan, 1999, 3(1): 27–35

DOI

34
Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Advanced Synthesis & Catalysis, 2001, 343(5): 393–427

DOI

35
Sawatari N, Yokota T, Sakaguchi S, Ishii Y. Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent. Journal of Organic Chemistry, 2001, 66(23): 7889–7891

DOI

36
Baucherel X, Gonsalvi L, Arends I W C E, Ellwood S, Sheldon R A. Aerobic oxidation of cycloalkanes, alcohols and ethylbenzene catalyzed by the novel carbon radical chain promoter NHS (N-hydroxysaccharin). Advanced Synthesis & Catalysis, 2004, 346(2-3): 286–296

DOI

37
Yang G Y, Zhang Q H, Miao H, Tong X L, Xu J. Selective organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide. Organic Letters, 2005, 7(2): 263–266

DOI

38
Yang G Y, Ma Y F, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. Journal of the American Chemical Society, 2004, 126(34): 10542–10543

DOI

39
Tong X, Xu J, Miao H. Highly efficient and metal-free aerobic hydrocarbons oxidation process by an o-phenanthroline-mediated organocatalytic system. Advanced Synthesis & Catalysis, 2005, 347(15): 1953–1957

DOI

40
Detoni C, Carvalho N M F, Aranda D A G, Louis B, Antunes O A C. Cyclohexane and toluene oxidation catalyzed by 1,10-phenanthroline Cu(II) complexes. Applied Catalysis A, General, 2009, 365(2): 281–286

DOI

41
Ison A, Xu C, Weakley G K, Richardson D E. Catalytic autoxidations using tris-diimine iron(II) coordination complexes. Journal of Molecular Catalysis A Chemical, 2008, 293(1-2): 1–7

DOI

42
Suzuki Y, Harada E, Nakamaru K, Takeda Y, Sano M, Hashimoto K, Miyake T. Direct oxidation of cycloalkanes with molecular oxygen to dicarboxylic acids using isoamyl nitrite. Journal of Molecular Catalysis A Chemical, 2007, 276(1-2): 1–7

DOI

43
Bonnet D, Ireland T, Fache E, Simonato J. Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chemistry, 2006, 8(6): 556–559

DOI

44
Barton D, Lee K W, Mehl W, Ozbalik N, Zhang L. Functionalization of saturated-hydrocarbons. 17. Reactivity of carbon carbon double-bonds. Tetrahedron, 1990, 46(11): 3753–3768

DOI

45
Sun X L, Jin H. Catalytic oxidation of cyclohexane to cyclohexanone by GoAggII system. Chinese Journal of Synthetic Chemistry, 2008, 16(4): 451–453(in Chinese)

46
Nayak S, Gamez P, Kozlevcar B, Pevec A, Roubeau O, Dehnen S, Reedijk J. Coordination compounds from the planar tridentate Schiff-base ligand 2-methoxy-6-((quinolin-8-ylimino)methyl)phenol (mqmpH) with several transition metal ions: use of [FeIII(mqmp)(CH3OH)Cl2] in the catalytic oxidation of alkanes and alkenes. Polyhedron, 2010, 29(11): 2291–2296

DOI

47
Hitomi Y, Furukawa S, Higuchi M, Shishido T, Tanaka T. Alkane hydroxylation catalyzed by a series of mononuclear nonheme iron complexes containing 4-nitropyridine ligands. Journal of Molecular Catalysis A Chemical, 2008, 288(1-2): 83–86

DOI

48
Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P-450 chemistry and oxidation catalysis. Comptes Rendus. Chimie, 2007, 10(4-5): 392–413

DOI

49
Bagchi V, Bandyopadhyay D. The porphyrin complex catalyzed dioxygen activation in presence of solid inorganic phosphates and small quantities of t-BuOOH. Polyhedron, 2008, 27(5): 1387–1392

DOI

50
Guo C C, Chu M F, Liu Q, Liu Y, Guo D C, Liu X Q. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A, General, 2003, 246(2): 303–309

DOI

51
Haranaka M, Hara A, Ando W, Akasaka T. Oxygen atom transfer from carbonyl oxide to alkane catalyzed by metalloporphyrin. Tetrahedron Letters, 2009, 50(26): 3585–3587

DOI

52
Poltowicz J, Pamin K, Haber J. Influence of manganese tetraarylporphyrins substituents on the selectivity of cycloalkanes oxidation with magnesium monoperoxyphthalate. Journal of Molecular Catalysis A Chemical, 2006, 257(1-2): 154–157

DOI

53
Chen Y X, She Y B, Xu J, Li Y. Studies on QSAR of metalloporphyrin catalysts in the oxidation of cyclohexane to adipic acid. Frontiers of Chemical Engineering in China, 2007, 1(2): 155–161

DOI

54
Hu B Y, Yuan Y J, Xiao J, Guo C C, Liu Q, Tan Z, Li Q H. Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. Journal of Porphyrins and Phthalocyanines, 2008, 12(1): 27–34

DOI

55
Carvalho Da Silva D, De Freitas-Silva G, Do Nascimento E, Reboucas J S, Barbeira P J S, Dai De Carvalho M E M, Idemori Y M. Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of β-bromination. Journal of Inorganic Biochemistry, 2008, 102(10): 1932–1941

DOI

56
Rutkowska-Zbik D, Witko M. Following nature-theoretical studies on factors modulating catalytic activity of porphyrins. Journal of Molecular Catalysis A Chemical, 2006, 258(1-2): 376–380

DOI

57
Ma D S, Hu B C, Lu C X. Selective aerobic oxidation of cyclohexane catalyzed by metallodeuteroporphyrin-IX-dimethylester. Catalysis Communications, 2009, 10(6): 781–783

DOI

58
Hu B C, Zhou W Y, Ma D S, Liu Z L. Metallo-deuteroporphyrins as catalysts for the oxidation of cyclohexane with air in the absence of additives and solvents. Catalysis Communications, 2008, 10(1): 83–85

DOI

59
Zhou W Y, Hu B C, Xu S C, Sun C G, Liu Z L. Catalysis of metallo-deuteroporphyrins for cyclohexane oxidation with air. Chemical Journal of Chinese Universities, 2010, 31(4): 723–726 (in Chinese)

60
Zhou W Y, Hu B C, Liu Z L. Selective oxidation of cyclohexane catalyzed by metallo-deuteroporphyrins in homogeneous solution. Chinese Journal of Applied Chemistry, 2010, 27(4): 424–427 (in Chinese)

61
Zhang R, Yu W Y, Che C M. Catalytic enantioselective oxidation of aromatic hydrocarbons with D4-symmetric chiral ruthenium porphyrin catalysts. Tetrahedron, Asymmetry, 2005, 16(21): 3520–3526

DOI

62
Monfared H H, Aghapoor V, Ghorbanloo M, Mayer P. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(III) meso-tetraphenylporphyrin complex: optimization of effective parameters using the Taguchi method. Applied Catalysis A, General, 2010, 372(2): 209–216

DOI

63
Xie J, Wang Y J, Wei Y. Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications, 2009, 11(2): 110–113

DOI

64
Fu B, Yu H C, Huang J W, Zhao P, Liu J, Ji L N. Mn(III) porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen. Journal of Molecular Catalysis A Chemical, 2009, 298(1-2): 74–80

DOI

65
Cai J H, Huang J W, Zhao P, Ye Y J, Yu H C, Ji L N. Silica-metalloporphyrins hybrid materials: preparation and catalysis to hydroxylate cyclohexane with molecular oxygen. Journal of Sol-Gel Science and Technology, 2009, 50(3): 430–436

DOI

66
Wang X T, Chu M F, Guo C C. Catalysis of manganeseporphyrin supported on imidazole-modified silica gel for cyclohexane oxidation with air. Chemical Journal of Chinese Universities, 2005, 26(1): 64–67(in Chinese)

67
Liu C X, Liu Q, Guo C C, Tan Z. Preparation and characterization of novel magnetic nanocomposite-bonded metalloporphyrins as biomimetic nanocatalysts. Journal of Porphyrins and Phthalocyanines, 2010, 14(9): 825–831

DOI

68
Liu C X, Liu Q, Guo C C. Synthesis and catalytic abilities of silica-coated Fe3O4 nanoparticle bonded metalloporphyrins with different saturation magnetization. Catalysis Letters, 2010, 138(1-2): 96–103

DOI

69
Machado G S, Castro K, de Lima O J, Nassar E J, Ciuffi K J, Nakagaki S. Aluminosilicate obtained by sol-gel process as support for an anionic iron porphyrin: development of a selective and reusable catalyst for oxidation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1-3): 162–169

DOI

70
Moghadam M, Mirkhani V, Tangestaninejad S, Mohammdpoor-Baltork I, Kargar H. Silica supported Mn(Br8TPP)Cl and Mn(TPP)Cl as efficient and reusable catalysts for selective hydrocarbon oxidation under various reaction conditions: the effect of substituted bromines on the catalytic activity and reusability. Journal of Molecular Catalysis A Chemical, 2008, 288(1-2): 116–124

DOI

71
Matachowski L, Pamin K, Poltowicz J, Serwicka E M, Jones W, Mokaya R. Oxidation of cyclooctane over metalloporphyrin-exchanged Al, Si-mesoporous molecular sieves of HMS (MMS) type. Applied Catalysis A, General, 2006, 313(1): 106–111

DOI

72
Farzaneh F, Poorkhosravani M, Ghandi M. Utilization of immobilized biomimetic iron complexes within nanoreactors of Al-MCM-41 as cyclohexane oxidation catalyst. Journal of Molecular Catalysis A Chemical, 2009, 308(1-2): 108–113

DOI

73
Raja R, Ratnasamy P. Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catalysis Letters, 1997, 48(1-2): 1–10

DOI

74
Ratnasamy P, Srinivas D. Selective oxidations over zeolite- and mesoporous silica-based catalysts: selected examples. Catalysis Today, 2009, 141(1-2): 3–11

DOI

75
Mirkhani V, Moghadam M, Tangestaninejad S, Kargar H. Mn(Br8TPP)Cl supported on poly styrene-bound imidazole: an efficient and reusable catalyst for biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate under various reaction conditions. Applied Catalysis A, General, 2006, 303(2): 221–229

DOI

76
Huang G, Guo C C, Tang S S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. Journal of Molecular Catalysis A Chemical, 2007, 261(1): 125–130

DOI

77
Tangestaninejad S, Habibi M H, Mirkhani V, Moghadam M. Mn(Br8TPPS) supported on amberlite IRA-400 as a robust and efficient catalyst for alkene epoxidation and alkane hydroxylation. Molecules (Basel, Switzerland), 2002, 7(2): 264–270

DOI

78
Tangestaninejad S, Habib M H, Mirkhani V, Moghadam M. Preparation of an insoluble polymer-supported Mn(III) porphyrin and its use as a new alkene epoxidation and alkane hydroxylation catalyst. Journal of Chemical Research: S, 2001, (10): 444–445

79
Castro K A D D, Bail A, Groszewicz P B, Machado G S, Schreiner W H, Wypych F, Nakagaki S. New oxidation catalysts based on iron(III) porphyrins immobilized on Mg-Al layered double hydroxides modified with triethanolamine. Applied Catalysis A, General, 2010, 386(1-2): 51–59

DOI

80
Halma M, Castro K A D D, Prevot V, Forano C, Wypych F, Nakagaki S. Immobilization of anionic iron(III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. Journal of Molecular Catalysis A Chemical, 2009, 310(1-2): 42–50

DOI

81
Huang G, Liu S Y, Guo Y A, Wang A P, Luo J, Cai C C. Immobilization of manganese tetraphenylporphyrin on boehmite and its catalysis for aerobic oxidation of cyclohexane. Applied Catalysis A, General, 2009, 358(2): 173–179

DOI

82
Guo C C, Xu J B, Long M J, Huang Z M, Liang B X. Study on catalysis of sepiolite-supported metalloporphyrins for cyclohexane oxidation with PhIO. Journal of Hunan University, 1999, 26(3): 18–21 (Natural Sciences Edition) (in Chinese)

83
Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. Journal of Catalysis, 1995, 155(1): 59–73

DOI

84
Guo C C, Liu X Q, Liu Q, Liu Y, Chu M F, Lin W Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. Journal of Porphyrins and Phthalocyanines, 2009, 13(12): 1250–1254

DOI

85
Noack H, Georgiev V, Blomberg M, Siegbahn P, Johansson A J. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorganic Chemistry, 2011, 50(4): 1194–1202

DOI

Outlines

/