RESEARCH ARTICLE

Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system

  • Lifeng YAN ,
  • Yi ZHAO ,
  • Qing GU ,
  • Wan LI
Expand
  • Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China

Received date: 07 Mar 2012

Accepted date: 07 May 2012

Published date: 05 Sep 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Cellulose samples with molecular weights ranging from 8.39 × 104 to 11.00 × 104 g/mol were obtained from wheat straw. The dewaxed wheat straw was pretreated with aqueous hydrochloric acid followed by delignification using an environmentally benign poly(ethyleneglycol)/salt aqueous biphasic system. The yield of cellulose was in the range of 48.9%–55.5% and the cellulose contained 1.2%–3.2% hemicelluloses, and 0.97%–3.47% lignin. All the isolated cellulose samples could be directly dissolved in a 6 wt-% NaOH/4 wt-% urea aqueous solution through a precooling-thawing process to form a homogenous solution. The separation process was investigated and the obtained cellulose and its solution were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray apparatus, and X-ray diffraction. The results revealed that aqueous soluble cellulose can be directly prepared from wheat straw by this method and this study opens a novel pathway to prepare cellulosic materials from agricultural waste.

Cite this article

Lifeng YAN , Yi ZHAO , Qing GU , Wan LI . Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(3) : 282 -291 . DOI: 10.1007/s11705-012-0901-5

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51073147) and the National Basic Research Program of China (Grant Nos. 2010CB923302 and 2011CB921403).
1
Huber G W, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition, 2007, 46(38): 7184-7201

DOI PMID

2
Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183

DOI PMID

3
Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007, 107(6): 2411-2502

DOI PMID

4
Metzger J O. Production of liquid hydrocarbons from biomass. Angewandte Chemie International Edition, 2006, 45(5): 696-698

DOI PMID

5
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science, 2006, 311(5760): 484-489

DOI PMID

6
Goodger E M. Hydrocarbon fuels: production, properties and performance of liquids and gases. London: Macmillan, 1976, 4-16

7
Nishio Y. Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Advances in Polymer Science, 2006, 205(9): 97-151

DOI

8
Heinze T, Liebert T, Heublein B, Hornig S. Functional polymers based on dextran. Advances in Polymer Science, 2006, 205(9): 199-291

DOI

9
Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H P, Marsch S. Nanocelluloses as innovative polymers in research and application. Advances in Polymer Science, 2006, 205(9): 49-96

DOI

10
Schaible D, Sherwood B. Treatment of pulp to produce microcrystalline cellulose. US<patent>20050145351A1</patent>, 2005

11
Zhang Y, Lu X, Pizzi A, Delmotte L. Wheat straw particleboard bonding improvements by enzyme pretreatment. European Journal of Wood and Wood Products, 2003, 61(1): 49-54

DOI

12
Avella M, Martuscelli E, Pascucci B, Raimo M, Focher B, Marzetti A. A new class of biodegradable materials—poly-3-hydroxy-butyrate steam exploded straw fiber composites. 1. Thermal and impact behavior. Journal of Applied Polymer Science, 1993, 49(12): 2091-2103

DOI

13
Hornsby P R, Hinrichsen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. 1. Fibre characterization. Journal of Materials Science, 1997, 32(2): 443-449

DOI

14
Chen J, Spear S K, Huddleston J G, Rogers R D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 2005, 7(2): 64-82

DOI

15
Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 2005, 23(1): 22-27

DOI PMID

16
Diaz M J, Eugenio M E, Lopez F, Alaejos J. Paper from olive tree residues. Industrial Crops and Products, 2005, 21(2): 211-221

DOI

17
Yan L F, Li W, Yang J L, Zhu Q S. Direct visualization of straw cell walls by AFM. Macromolecular Bioscience, 2004, 4(2): 112-118

DOI PMID

18
Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 2004, 20(2): 131-141

DOI

19
Smook G A, ed. Handbook for Pulp & Paper Technologists. 2nd ed. Vancouver: Angus Wilde Publications, 1992, 22-58

20
Vincent J F V. From cellulose to cell. Journal of Experimental Biology, 1999, 202(Pt 23): 3263-3268

PMID

21
Sun R C, Fang J M, Tomkinson J, Geng Z C, Liu J C. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydrate Polymers, 2001, 44(1): 29-39

DOI

22
Herrera A, Tellez-Luis S J, Gonzalez-Cabriales J J, Ramirez J A, Vazquez M. Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. Journal of Food Engineering, 2004, 63(1): 103-109

DOI

23
Sepulveda-Huerta E, Tellez-Luis S J, Bocanegra-Garcia V, Ramirez J A, Vazquez M. Production of detoxified sorghum straw hydrolysates for fermentative purposes. Journal of the Science of Food and Agriculture, 2006, 86(15): 2579-2586

DOI

24
Aguilar R, Ramirez J A, Garrote G, Vazquez M. Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering, 2002, 55(4): 309-318

DOI

25
Tellez-Luis S J, Uresti R M, Ramirez J A, Vazquez M. Low-salt restructured fish products using microbial transglutaminase as binding agent. Journal of the Science of Food and Agriculture, 2002, 82(9): 953-959

DOI

26
Herrera A, Tellez-Luis S J, Ramirez J A, Vazquez M. Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science, 2003, 37(3): 267-274

DOI

27
Gámez S, Gonzalez-Cabriales J J, Ramirez J A, Garrote G, Vazquez M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 2006, 74(1): 78-88

DOI

28
Ruan D, Zhang L N, Lue A, Zhou J P, Chen H, Chen X M, Chu B, Kondo T. A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromolecular Rapid Communications, 2006, 27(17): 1495-1500

DOI

29
Pye E K, Lora J H. The alcell process—a proven alternative to Kraft pulping. Tappi Journal, 1991, 74(3): 113-118

30
Green R P, Hough G, eds. Chemical Recovery in the Alkaline Pulping Processes Revised Edition. Atlanta: Tappi Press, 1992, 1-35

31
Paszner L, Cho H J. Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi Journal, 1989, 72(2): 135-142

32
Mcdonough T J. The chemistry of organosolv delignification. Tappi Journal, 1993, 76(8): 186-193

33
Guo Z, Li M, Willauer H D, Huddleston J G, April G C, Rogers R D. Evaluation of polymer-based aqueous biphasic systems as improvement for the hardwood alkaline pulping process. Industrial & Engineering Chemistry Research, 2002, 41(10): 2535-2542

DOI

34
Zhang L N, Ruan D, Gao S J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Pol Phys, 2002, 40(14): 1521-1529

DOI

35
Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular Bioscience, 2005, 5(6): 539-548

DOI PMID

36
Chai X S, Zhu J Y. Method for rapidly determining a pulp kappa number using spectrophotometry. US<patent>6475339B1</patent>, 2002

37
Togrul H, Arslan N. Flow properties of sugar beet pulp cellulose and intrinsic viscosity-molecular weight relationship. Carbohydrate Polymers, 2003, 54(1): 63-71

DOI

38
Johnston H K, Sourirajan S. Viscosity-temperature relationships for cellulose acetate-acetone solutions. Journal of Applied Polymer Science, 1973, 17(12): 3717-3726

DOI

39
Zhou J P, Zhang L, Deng Q H, Wu X J. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(23): 5911-5920

DOI

40
Roberts K. Structures at the plant cell surface. Current Opinion in Cell Biology, 1990, 2(5): 920-928

DOI PMID

41
Ristolainen M, Alen R, Malkavaara P, Pere J. Reflectance FTIR microspectroscopy for studying effect of xylan removal on unbleached and bleached birch Kraft pulps. Holzforschung, 2002, 56(5): 513-521

DOI

42
Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation & Stability, 2001, 74(2): 307-319

DOI

43
Sun R, Sun X F, Liu G Q, Fowler P, Tomkinson J. Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polymer International, 2002, 51(2): 117-124

DOI

44
Sun X F, Sun R C, Su Y Q, Sun J X. Comparative study of crude and purified cellulose from wheat straw. Journal of Agricultural and Food Chemistry, 2004, 52(4): 839-847

DOI PMID

45
Kaplan D L, ed. Biopolymers from Renewable Resources. 1st ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 1998, 3-27

Outlines

/