RESEARCH ARTICLE

Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure

  • Shengping WANG ,
  • Xin ZHANG ,
  • Yujun ZHAO ,
  • Yadong GE ,
  • Jing LV ,
  • Baowei WANG ,
  • Xinbin MA
Expand
  • Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 26 Apr 2012

Accepted date: 06 Jun 2012

Published date: 05 Sep 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Cordierite monoliths coated with Pd-Fe/α-Al2O3 catalysts were prepared at various calcination temperatures and characterized by thermogravimetry, temperature-programmed reduction, transmission electron microscopy, diffuse reflectance infrared Fourier transformation spectroscopy and X-ray diffraction. The performance of the catalytic monoliths for the synthesis of dimethyl oxalate (DMO) through a CO coupling reaction was evaluated. Monolithic catalysts with calcination temperatures ranging from 473 K to 673 K exhibited excellent dispersion of Pd, good CO adsorption properties, and excellent performance for the coupling reaction. The optimized monolithic catalyst exhibited a much higher Pd efficiency (denoted as DMO (g)·Pd (g)-1·h-1) (733 h-1) than that of the granular catalyst (60.2 h-1), which can be attributed to its honeycomb structure and the large pore sizes in the α-Al2O3 washcoat which was accompanied with an even distribution of the active component in the coating layer along the monoliths channels.

Cite this article

Shengping WANG , Xin ZHANG , Yujun ZHAO , Yadong GE , Jing LV , Baowei WANG , Xinbin MA . Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(3) : 259 -269 . DOI: 10.1007/s11705-012-1212-6

Acknowledgments

The authors greatly thank the National Key Project for the 11th Five Year Plan (Grant No. 2006BAE02B00) and the Program of Introducing Talents of Discipline to Universities (B06006) for financial support.
1
Zhao T J, Chen D, Dai Y C, Yuan W K, Holmen A. Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts. Industrial & Engineering Chemistry Research, 2004, 43(16): 4595–4601

DOI

2
Zhao X G, Lv X L, Zhao H G, Zhu Y Q, Xiao W D. Study on Pd/α-Al2O3 catalyst for vapor-phase coupling reaction of CO with CH3ONO to (CH3OOC)2. Chinese Journal of Catalysis, 2004, 25(2): 125–128

3
Jiang X Z, Su Y H, Lee B J, Chien S H. A study on the synthesis of diethyl oxalate over Pd/α-Al2O3 catalysts. Applied Catalysis A: General, 2001, 211(1): 47–51

4
Lin Q, Ji Y, Jiang Z D, Xiao W D. Effects of precursors on preparation of Pd/α-alumina catalyst for synthesis of dimethyl oxalate. Industrial & Engineering Chemistry Research, 2007, 46(24): 7950–7954

DOI

5
Zhao X G, Lin Q, Xiao W D.Characterization of Pd-CeO2/α-alumina catalyst for synthesis of dimethyl oxalate. Applied Catalysis A: General, 2005, 284(1-2): 253–257

6
Ji Y, Liu G, Li W, Xiao W. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3. Journal of Molecular Catalysis A: Chemical, 2009, 314(1-2): 63–70

DOI

7
Uchiumi S I, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system. Journal of Organometallic Chemistry, 1999, 576(1-2): 279–289

DOI

8
Gao Z H, Liu Z C, He F, Xu G H. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate. Journal of Molecular Catalysis A: Chemical, 2005, 235(1): 143–149

DOI

9
Ma X B, Xu G H, Chen J W, Chen H F. Kinetics of carbon monoxide catalytic coupling to diethyl oxalate in gaseous phase. Journal of Chemical Industry and Engineering (China), 1995, 46(1): 50–56 (In Chinese)

10
Meng F D, Xu G H, Guo Q R. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/α-Al2O3 catalyst. Journal of Molecular Catalysis A: Chemical, 2003, 201(1-2): 283–288

DOI

11
Meng F D, Xu G H, Guo R Q, Yan H F, Chen M Q. Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst. Chemical Engineering and Processing, 2004, 43(6): 785–790

DOI

12
Xu G H, Ma X B, He F, Chen H F. Characteristics of catalyst for carbon monoxide coupling reaction. Industrial & Engineering Chemistry Research, 1995, 34(7): 2379–2382

DOI

13
Wu D F, Jiang W, Zhou J C. Effect of drying and calcination on the toluene combustion activity of a monolithic CuMnAg/γ-Al2O3/cordierite catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(4): 569–576

14
Tsubota S, Nakamura T, Tanaka K, Haruta M. Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catalysis Letters, 1998, 56(2): 131–135

DOI

15
Agostini G, Pellegrini R, Leofanti G, Bertinetti L, Bertarione S, Groppo E, Zecchina A, Lamberti C. Determination of the particle size, available surface area, and nature of exposed sites for silica-alumina-supported Pd nanoparticles: a multitechnical approach. Journal of Physical Chemistry C, 2009, 113(24): 10485–10492

DOI

16
Nijhuis T A, Kreutzer M T, Romijn A C J, Kapteijn F, Moulijn J A. Monolithic catalysts as efficient three-phase reactors. Chemical Engineering Science, 2001, 56(3): 823–829

DOI

17
Nijhuis T A, Beers A E W, Vergunst T, Hoek I, Kapteijn F, Moulijn J A. Preparation of monolithic catalysts. Catalysis Reviews, 2001, 43(4): 345–380

DOI

18
Heck R M, Gulati S, Farrauto R J. The application of monoliths for gas phase catalytic reactions. Chemical Engineering Journal, 2001, 82(1-3): 149–156

DOI

19
Casanovas A, De Leitenburg C, Trovarelli A, Llorca J. Catalytic monoliths for ethanol steam reforming. Catalysis Today, 2008, 138(3-4): 187–192

DOI

20
Zhao Y J, Zhou J, Zhang J G, Wang S D. Monolithic Ru-based catalyst for selective hydrogenation of benzene to cyclohexene. Catalysis Communications, 2008, 9(3): 459–464

DOI

21
Zhao Y J, Zhou J, Zhang J G, Li D, Wang S D. Selective hydrogenation of benzene to cyclohexene on a Ru/Al2O3/cordierite monolithic catalyst: effect of mass transfer on the catalytic performance. Industrial & Engineering Chemistry Research, 2008, 47(14): 4641–4647

DOI

22
Zhang J G, Li D F, Zhao Y J, Kong Q D, Wang S D A. Pd/Al2O3/cordierite monolithic catalyst for hydrogenation of 2-ethylanthraquinone. Catalysis Communications, 2008, 9(15): 2565–2569

DOI

23
Neri G, Rizzo G, Corigliano F, Arrigo I, Caprì M, De Luca L, Modafferi V, Donato A. A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidation in a H2-rich mixture. Catalysis Today, 2009, 147S: S210–S214

DOI

24
Yue H R, Zhao Y J, Zhao L, Lv J, Wang S P, Gong J L, Ma X B.Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: enhanced internal mass transfer and stability. AIChE Journal, 2011,

DOI

25
Gao X C, Zhao Y J, Wang S P, Yin Y L, Wang B W, Ma X B A. Pd-Fe/α-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate. Chemical Engineering Science, 2011, 66(15): 3513–3522

DOI

26
Leofanti G, Padovan M, Garilli M, Carmello D, Marra G L, Zecchina A, Spoto G, Bordiga S, Lamberti C. Alumina-supported copper chloride. 2 . Effect of aging and thermal treatments. Journal of Catalysis, 2000, 189(1): 105–116

DOI

27
Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Berlier G, Prestipino C, Casali G, Lamberti C. Alumina-supported copper chloride. 3. Effect of exposure to ethylene. Journal of Catalysis, 2001, 202(2): 279–295

DOI

28
Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Prestipino C, Villain F, Lamberti C. Alumina-supported copper chloride. 4.Effect of exposure to O2 and HCl. Journal of Catalysis, 2002, 205(2): 375–381

DOI

29
Prestipino C, Bordiga S, Lamberti C, Vidotto S, Garilli M, Cremaschi B, Marsella A, Leofanti G, Fisicaro P, Spoto G, Zecchina A. Structural determination of copper species on the alumina-supported copper chloride catalyst: a detailed EXAFS study. Journal of Physical Chemistry B, 2003, 107(21): 5022–5030

DOI

30
Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A: General, 2001, 212(1-2): 17–60

31
Seshu Babu N, Lingaiah N, Vinod Kumar J, Sai Prasad P S. Studies on alumina supported Pd-Fe bimetallic catalysts prepared by deposition-precipitation method for hydrodechlorination of chlorobenzene. Applied Catalysis A: General, 2009, 367(1-2): 70–76

32
Yue B H, Zhou R X, Wang Y J, Zheng X M. Study of the methane combustion and TPR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M= Mg, Ca, Sr, Ba. Journal of Molecular Catalysis A: Chemical, 2005, 238(1-2): 241–249

DOI

33
Wang C B, Lin H K, Ho C M. Effects of the addition of titania on the thermal characterization of alumina-supported palladium. Journal of Molecular Catalysis A: Chemical, 2002, 180(1-2): 285–291

DOI

34
Bertarione S, Scarano D, Zecchina A, Johánek V, Hoffmann J, Schauermann S, Frank M M, Libuda J, Rupprechter G, Freund H J. Surface reactivity of Pd nanoparticles supported on polycrystalline substrates as compared to thin film model catalysts: infrared study of CO adsorption. Journal of Physical Chemistry B, 2004, 108(11): 3603–3613

DOI

35
van der Eerden A M J, Visser T, Nijhuis T A, Ikeda Y, Lepage M, Koningsberger D C, Weckhuysen B M. Atomic XAFS as a tool to probe the electronic properties of supported noble metal nanoclusters. Journal of the American Chemical Society, 2005, 127(10): 3272–3273

DOI PMID

36
Groppo E, Bertarione S, Rotunno F, Agostini G, Scarano D, Pellegrini R, Leofanti G, Zecchina A, Lamberti C. Role of the support in determining the vibrational properties of carbonyls formed on Pd supported on SiO2-Al2O3, Al2O3, and MgO. Journal of Physical Chemistry C, 2007, 111(19): 7021–7028

DOI

37
Tüshaus M, Berndt W, Conrad H, Bradshaw A, Persson B. Understanding the structure of high coverage CO adlayers. Applied Physics A: Materials Science & Processing, 1990, 51(2): 91–98

DOI

38
Szanyi J, Kuhn W K, Goodman D W. CO adsorption on Pd (111) and Pd (100): low and high pressure correlations. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 1993, 11(4): 1969–1974

DOI

39
Fukui K, Miyauchi H, Iwasawa Y. CO adsorption and oxidation on Pd (110)-c (2 × 4)-O by reflection-absorption infrared spectroscopy. Journal of Physical Chemistry, 1996, 100(48): 18795–18801

DOI

40
Cook J C, Clowes S K, Mccash E M. Reflection absorption IR studies of vibrational energytransfer processes and adsorptionenergetics. Journal of the Chemical Society, Faraday Transactions, 1997, 93(13): 2315–2322

DOI

41
Bourguignon B, Carrez S, Dragnea B, Dubost H. Vibrational spectroscopy of imperfect CO/Pd (111) surfaces obtained by adsorption between 150 and 230 K. Surface Science, 1998, 418(1): 171–180

DOI

42
Giorgi J B, Schroeder T, Bäumer M, Freund H J. Study of CO adsorption on crystalline-silica-supported palladium particles. Surface Science, 2002, 498(1): L71–L77

DOI

43
Sanchez-Escribano V, Arrighi L, Riani P, Marazza R, Busca G. Characterization of Pd-Cu alloy nanoparticles on γ-Al2O3-supported catalysts. Langmuir, 2006, 22(22): 9214–9219

DOI PMID

44
Sheu L L, Karpinski Z, Sachtler W M H. Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts. Journal of Physical Chemistry, 1989, 93(12): 4890–4894

DOI

45
Zhao X G, Lin Q, Xiao W D. Characterization of Pd-CeO2/α-alumina catalyst for synthesis of dimethyl oxalate. Applied Catalysis A: General, 2005, 284(1-2): 253–257

Outlines

/