RESEARCH ARTICLE

Screening of potential aquatic probiotics from the major microflora of guppies (Poecilia reticulata)

  • Aparna BALAKRISHNA ,
  • T. R. KEERTHI
Expand
  • School of Biosciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam-686560, India

Received date: 02 Dec 2011

Accepted date: 20 Mar 2012

Published date: 05 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The fish (Poecilia reticulata) was used as the source for probiotics. 46 bacterial isolates were obtained from the skin, gills, guts and intestines of the guppy, Poecilia reticulata (collected from a government model fish farm in Kottayam, India). Of the above isolated strains, four isolates were selected based on their inhibitory spectrum against five indicator strains, Aeromonas hydrophila 1739, Vibrio cholerae 3906, Flavobacterium 2495, Acinetobacter 1271 and Alcaligenes 1424 (standard cultures collected from Microbial Type Culture Collection (MTCC) Chandigarh, India). Among the resulting isolates, two were gram-positive cocci, namely MBTU-PB2 and MBTU-PB3 and belong to the genus Staphylococcus. The other two were gram-negative rods, namely MBTU-PB1 and MBTU-PB4, of the genera Enterobacter and Acinetobacter, respectively. The basic probiotic characteristics of these isolates such as the production of bacteriocin like inhibitory substances (BLIS), antibiotic sensitivities and growth profiles were also determined. The above four isolated strains exhibited different antagonisms than the five indicator strains. During incubation, the antibacterial activity gradually increased in the inhibition zone and was influenced by the lag period (λ) and doubling time. The lag periods for most of the four selected strains were shorter than those of the indicator strains and the isolates had different growth rates (µ) than the indicator strains. All four isolates produced BLIS, however, the strains had different BLIS activities against the indicator strains. Treatment of the neutralized cell free supernatants of the selected isolates with proteases eliminated or reduced the BLIS activity, suggesting a proteinaceous nature of the inhibitory compounds. Further, the optimum BLIS activity was observed at neutral pH after 18 h of incubation. The antibiotic sensitivity assay revealed that the isolates were susceptible to routinely used antibiotics, whereas the plasmid profiles showed that the plasmids had no role in the antagonistic properties of the four isolated strains. The results showed that the isolates could be a promising source for biocontrol agents in aquacultures.

Cite this article

Aparna BALAKRISHNA , T. R. KEERTHI . Screening of potential aquatic probiotics from the major microflora of guppies (Poecilia reticulata)[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(2) : 163 -173 . DOI: 10.1007/s11705-012-1283-4

Acknowledgments

The authors gratefully acknowledge financial support from the University Grants Commission, Government of India, New Delhi, under Grant UGC-F.No.37-264/2009 (SR).
1
Maeda M, Liao I C. Microbial processes in aquaculture environment and their importance for increasing crustacean production. Japan Agricultural Research Quarterly, 1994, 28: 283–288

2
Cannell R J P, Owsianka A M, Walker J M. Results of a large scale screening programme to detect antibacterial activity from fresh water algae. British Phycological Journal, 1988, 23(1): 41–44

DOI

3
Grisez L, Ollevier F. Vibrio (Listonella) Anguillarum Infection in Marine Fish Larviculture. In: Lavens P, Jaspers E, Roelands I, eds. Larvi’91–Fish and Crustacean Larviculture Symposium. European Aquaculture Society, Gent, 1995, 24: 497

4
Hansen G H, Olafsen J A. Bacterial interactions in early life stages of marine cold water fish. Microbial Ecology, 1999, 38(1): 1–26

DOI PMID

5
Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 2000, 64(4): 655–671

DOI PMID

6
Schwarz S, Kehrenberg C, Walsh T R. Use of antimicrobial agents in veterinary medicine and food animal production. International Journal of Antimicrobial Agents, 2001, 17(6): 431–437

DOI PMID

7
Akinbowale O L, Peng H, Barton M D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 2006, 100(5): 1103–1113

DOI PMID

8
Moriarty D J W. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture (Amsterdam, Netherlands), 1998, 164(1–4): 351–358

DOI

9
Vine N G, Leukes W D, Kaiser H. In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiology Letters, 2004, 231(1): 145–152

DOI PMID

10
Fuller R. History and Development of Probiotics. In: Fuller R, ed. Probiotics: The Scientific Basis. London: Chapman and Hall, 1992, 1–8

11
Austin B, Stuckey L F, Robertson P A W, Effendi I, Griffith D R W. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. Journal of Fish Diseases, 1995, 18(1): 93–96

DOI

12
Moriarty D J W. Diseases Control in Shrimp Aquaculture with Probiotic Bacteria. In: Bell C R, Brylinsky M, Johnson-Green P, eds. Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, 1999, 237–243

13
Atlas R M, Bartha E. Microbial Ecology Fundamentals and Application. Menlo Park: Benjamin Cummings Science Publishing, 1997

14
Gould G. Industry perspectives on the use of natural antimicrobials and inhibitors for food applications. Journal of Food Protection, 1996, 59: S82–S86

15
McAuliffe O, Ross R P, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 2001, 25(3): 285–308

DOI PMID

16
Tagg J R, Dajani A S, Wannamaker L W. Bacteriocins of gram-positive bacteria. Bacteriological Reviews, 1976, 40(3): 722–756

PMID

17
Riley M A, Wertz J E. Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology, 2002, 56(1): 117–137

DOI PMID

18
Dopazo C P, Lemos M L, Lodeiros C, Bolinches J, Barja J L, Toranzo A E. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. Journal of Applied Bacteriology, 1988, 65(2): 97–101

DOI PMID

19
Anne J A, Praseeja R J, Keerthi T R. Evaluation of probiotic potential of lactic acid bacteria isolated from infant feces and the study of its effect on the enteric fever pathogens— Salmonella typhi and Salmonella paratyphi A. International Journal of Chemical Science, 2010, 8(5): S376– S387

20
Maniatis T, Fritsch E F, Sambrook J. Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbour Laboratory, Cold Spring Harbour, 1982

21
Trevors J T. Plasmid curing in bacteria. FEMS Microbiology Letters, 1986, 32(3–4): 149–157

DOI

22
Zar J H. Biostatical Analysis. New Jersey: Prentice-Hall, Englewood Cliffs, 1984, 2: 718

23
Zwietering M H, Jongenburger I, Rombouts F M, van’t Riet K. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 1990, 56(6): 1875–1881

PMID

24
Sugita H, Matsuo N, Shibuya K, Degunchi Y. Production of antibacterial substances by intestinal bacteria isolated from coastal crab and fish species. Journal of Marine Biotechnology, 1996, 4: 220–223

25
Azad I S, Al-Marzouk A. Autochthonous aquaculture probiotics—a critical analysis. Research Journal of BioTechnology, 2008, 3: 171–177

26
Lazado C C, Caipang C M A, Rajan B, Brinchmann M F, Kiron V. Characterization of GP21 and GP12: two potential probiotic bacteria isolated from the gastrointestinal tract of Atlantic Cod. Probiotics & Antimicrobial Proteins, 2010, 2(2): 126–134

DOI

27
Balcazar J L, de Blas I, Ruiz-Zarzuela I, Vendrell D, Muzquiz J L. Probiotics: a tool for the future of fish and shellfish health management. Journal of Aquaculture in the Tropics, 2004, 19: 239–242

28
Geovanny D G R, Balcázar J L, Ma S. Probiotics as control agents in aquaculture. Journal of Ocean University of China, 2007, 6(1): 76–79 (in Chinese)

DOI

29
de Vuyst L, Vandamme E J. Bacteriocins of Lactic Acid Bacteria. London: Blackie Academic & Professional, 1994, 91–142

30
Salinas I, Cuesta A, Esteban M A, Meseguer J. Dietary administration of actobacillus delbrüeckiiL and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish & Shellfish Immunology, 2005, 19(1): 67–77

DOI PMID

31
Parente E, Ricciardi A. Production, recovery and purification of bacteriocins from lactic acid bacteria. Applied Microbiology and Biotechnology, 1999, 52(5): 628–638

DOI PMID

32
Duitman E H, Hamoen L W, Rembold M, Venema G, Seitz H, Saenger W, Bernhard F, Reinhardt R, Schmidt M, Ullrich C, Stein T, Leenders F, Vater J. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(23): 13294–13299

DOI PMID

33
Bizani D, Brandelli A. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. Journal of Applied Microbiology, 2002, 93(3): 512–519

DOI PMID

34
Ghanbari M, Rezaei M, Soltani M, Shah-Hosseini G. Production of bacteriocin by a novel Bacillus sp. strain RF 140, an intestinal bacterium of Caspian Frisian Roach (Rutilus frisii kutum). Iranian Journal of Veterinary Research, 2009, 10(3): 267–272

35
Pinchuk I V, Bressollier P, Verneuil B, Fenet B, Sorokulova I B, Mégraud F, Urdaci M C. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy, 2001, 45(11): 3156–3161

DOI PMID

36
Messi P, Guerrieri E, Bondi M. Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates. FEMS Microbiology Letters, 2003, 220(1): 121–125

DOI PMID

37
Lee K H, Jun K D, Kim W S, Paik H D. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 2001, 32(3): 146–151

DOI PMID

38
Patel A K, Deshattiwar M K, Chaudhari B L, Chincholkar S B. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresource Technology, 2009, 100(1): 368–373

DOI PMID

Outlines

/