Frontiers of Chemical Science and Engineering >
Computational fluid dynamics applied to high temperature hydrogen separation membranes
Received date: 25 Oct 2011
Accepted date: 08 Jan 2012
Published date: 05 Mar 2012
Copyright
This work reviews the development of computational fluid dynamics (CFD) modeling for hydrogen separation, with a focus on high temperature membranes to address industrial requirements in terms of membrane systems as contactors, or in membrane reactor arrangements. CFD modeling of membranes attracts interesting challenges as the membrane provides a discontinuity of flow, and therefore cannot be solved by the Navier-Stokes equations. To address this problem, the concept of source has been introduced to understand gas flows on both sides or domains (feed and permeate) of the membrane. This is an important solution, as the gas flow and concentrations in the permeate domain are intrinsically affected by the gas flow and concentrations in the feed domain and vice-versa. In turn, the source term will depend on the membrane used, as different membrane materials comply with different transport mechanisms, in addition to varying gas selectivity and fluxes. This work also addresses concentration polarization, a common effect in membrane systems, though its significance is dependent upon the performance of the membrane coupled with the operating conditions. Finally, CFD modeling is shifting from simplified single gas simulation to industrial gas mixtures, when the mathematical treatment becomes more complex.
Guozhao JI , Guoxiong WANG , Kamel HOOMAN , Suresh BHATIA , João C. DINIZ da COSTA . Computational fluid dynamics applied to high temperature hydrogen separation membranes[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(1) : 3 -12 . DOI: 10.1007/s11705-011-1161-5
1 |
Marriott J I, Sørensen E, Bogle I D L. Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 2001, 25(4-6): 693-700
|
2 |
Wiley D E, Fletcher D F. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination, 2002, 145(1-3): 183-186
|
3 |
Huang L, Morrissey M T. Finite element analysis as a tool for crossflow membrane filter simulation. Journal of Membrane Science, 1999, 155(1): 19-30
|
4 |
Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chemical Engineering and Processing, 2006, 45(6): 437-454
|
5 |
Bao L, Lipscomb G G. Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules. Desalination, 2002, 146(1-3): 243-248
|
6 |
Lipscomb G G, Sonalkar S. Sources of non-ideal flow distribution and their effect on the performance of hollow fiber gas separation modules. Separation & Purification Reviews, 2005, 33(1): 41-76
|
7 |
Takaba H, Nakao S. Computational fluid dynamics study on concentration polarization in H2/CO separation membranes. Journal of Membrane Science, 2005, 249(1-2): 83-88
|
8 |
Abdel-jawad M M, Gopalakrishnan S, Duke M C, Macrossan M N, Schneider P S, Diniz da Costa J C. Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes. Journal of Membrane Science, 2007, 299(1-2): 229-235
|
9 |
Koros W J, Fleming G K. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1-80
|
10 |
McLellan B, Shoko E, Dicks A L, Diniz da Costa J C. Hydrogen production and utilisation opportunities for Australia. International Journal of Hydrogen Energy, 2005, 30(6): 669-679
|
11 |
Smart S, Lin C X C, Ding L, Thambimuthu K, Diniz da Costa J C. Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 2010, 3(3): 268-278
|
12 |
Uhlmann D, Smart S, Diniz da Costa J C. H2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science, 2011, 380(1-2): 48-54
|
13 |
Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science, 2006, 274(1-2): 83-91
|
14 |
Wesseling P. Principles of Computational Fluid Dynamics. Berlin: Springer, 2010
|
15 |
Tu J, Yeoh G H, Liu C. Computational fluid dynamics: a practical approach. Cambridge: Butterworth-Heinemann, 2008
|
16 |
Anderson J D. Computational fluid dynamics: the basics with applications.New York: McGraw-Hill, 1995
|
17 |
Yacou C, Smart S, Diniz da Costa J C. Long term performance of cobalt oxide silica membrane module for high temperature H2 separation. Energy & Environmental Science, 2011,
|
18 |
Coroneo M, Montante G, Catalano J, Paglianti A. Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification. Journal of Membrane Science, 2009, 343(1-2): 34-41
|
19 |
Koukou M K, Chaloulou G, Papayannakos N, Markatos N C. Mathematical modelling of the performance of non-isothermal membrane reactors. International Journal of Heat and Mass Transfer, 1997, 40(10): 2407-2417
|
20 |
Koukou M K, Papayannakos N, Markatos N C. Dispersion effects on membrane reactor performance. AIChE Journal. American Institute of Chemical Engineers, 1996, 42(9): 2607-2615
|
21 |
Koukou M K, Papayannakos N, Markatos N C. On the importance of non-ideal flow effects in the operation of industrial-scale adiabatic membrane reactors. Chemical Engineering Journal, 2001, 83(2): 95-105
|
22 |
Koukou M K, Papayannakos N, Markatos N C, Bracht M, Alderliesten P T. Simulation tools for the design of industrial-scale membrane reactors. Chemical Engineering Research & Design, 1998, 76(8): 911-920
|
23 |
Koukou M K, Papayannakos N, Markatos N C, Bracht M, Van Veen H M, Roskam A. Performance of ceramic membranes at elevated pressure and temperature: effect of non-ideal flow conditions in a pilot scale membrane separator. Journal of Membrane Science, 1999, 155(2): 241-259
|
24 |
Kawachale N, Kumar A, Kirpalani D M. Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes. Chemical Engineering & Technology, 2008, 31(1): 58-65
|
25 |
Kawachale N, Kumar A, Kirpalani D M. A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science, 2009, 332(1-2): 81-88
|
26 |
Kawachale N, Kirpalani D M, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chemical Engineering and Processing: Process Intensification, 2010, 49(7): 680-688
|
27 |
de Lange R S A, Hekkink J H A, Keizer K, Burggraaf A J, Ma Y H. Sorption studies of microporous sol-gel modified ceramic membranes. Journal of Porous Materials, 1995, 2(2): 141-149
|
28 |
Diniz da Costa J C, Lu G Q, Rudolph V, Lin Y S, Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol-gel membranes. Journal of Membrane Science, 2002, 198(1): 9-21
|
29 |
Barrer R M. Porous crystal membranes. Journal of the Chemical Society, Faraday Transactions, 1990, 86(7): 1123-1130
|
30 |
Krishna R, Baur R. Analytic solution of the Maxwell-Stefan equations for multicomponent permeation across a zeolite membrane. Chemical Engineering Journal, 2004, 97(1): 37-45
|
31 |
Krishna R, van Baten J M. Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials. Chemical Engineering Science, 2009, 64(13): 3159-3178
|
32 |
Krishna R, van Baten J M. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes. Journal of Membrane Science, 2011, 369(1-2): 545-549
|
33 |
Krishna R, van Baten J M. Maxwell-Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. Journal of Membrane Science, 2011, 383(1-2): 289-300
|
34 |
Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer. Chemical Engineering Science, 1997, 52(6): 861-911
|
35 |
Damak K, Ayadi A, Zeghmati B, Schmitz P. A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes. Desalination, 2004, 161(1): 67-77
|
36 |
Das D B, Nassehi V, Wakeman R J. A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions. Advances in Environmental Research, 2002, 7(1): 35-58
|
37 |
Pak A, Mohammadi T, Hosseinalipour S M, Allahdini V. CFD modeling of porous membranes. Desalination, 2008, 222(1-3): 482-488
|
38 |
Caravella A, Barbieri G, Drioli E. Concentration polarization analysis in self-supported Pd-based membranes. Separation and Purification Technology, 2009, 66(3): 613-624
|
39 |
Haraya K, Hakuta T, Yoshitome H, Kimura S. A study of concentration polarization phenomenon on the surface of a gas separation membrane. Separation Science and Technology, 1987, 22(5): 1425-1438
|
40 |
He G, Mi Y, Lock Yue P, Chen G. Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science, 1999, 153(2): 243-258
|
41 |
Mourgues A, Sanchez J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science, 2005, 252(1-2): 133-144
|
42 |
Nemmani R G, Suggala S V. An explicit solution for concentration polarization for gas separation in a hollow fiber membrane. Separation Science and Technology, 2010, 45(5): 581-591
|
43 |
Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science, 2006, 274(1-2): 83-91
|
44 |
Coroneo M, Montante G, Giacinti Baschetti M, Paglianti A. CFD modelling of inorganic membrane modules for gas mixture separation. Chemical Engineering Science, 2009, 64(5): 1085-1094
|
45 |
Nair B K R, Harold M P. Experiments and modeling of transport in composite Pd and Pd/Ag coated alumina hollow fibers. Journal of Membrane Science, 2008, 311(1-2): 53-67
|
46 |
Chasanis P, Kenig E Y, Hessel V, Sehmitt S. Modelling and simulation of a membrane microreactor using computational fluid dynamics. Amsterdam: Elsevier, 2008
|
47 |
Mori N, Nakamura T, Noda K, Sakai O, Takahashi A, Ogawa N, Sakai H, Iwamoto Y, Hattori T. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane. Industrial & Engineering Chemistry Research, 2007, 46(7): 1952-1958
|
48 |
Coroneo M, Montante G, Paglianti A P. Numerical and experimental fluid-dynamic analysis to improve the mass transfer performances of Pd-Ag membrane modules for hydrogen purification. Industrial & Engineering Chemistry Research, 2010, 49(19): 9300-9309
|
49 |
Battersby S, Duke M C, Liu S, Rudolph V, Costa J C D. Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. Journal of Membrane Science, 2008, 316(1-2): 46-52
|
50 |
Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91-98
|
51 |
Battersby S, Teixeira P W, Beltramini J, Duke M C, Rudolph V, Diniz da Costa J C. An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors. Catalysis Today, 2006, 116(1): 12-17
|
52 |
Sholl D S, Johnson J K. Materials science. Making high-flux membranes with carbon nanotubes. Science, 2006, 312(5776): 1003-1004
|
53 |
Leo A, Liu S, Diniz da Costa J C. Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology, 2011, 78(2): 220-227
|
54 |
Leo A, Smart S, Liu S, Diniz da Costa J C. High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science, 2011, 368(1-2): 64-68
|
55 |
Feron P, van Heuven J W, Akkerhuis J J, van der Welle R. Design and development of a membrane testcell with uniform mass transfer: application to characterisation of high flux gas separation membranes. Journal of Membrane Science, 1993, 80(1): 157-194
|
56 |
Liu S, Peng M, Vane L. CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module. Journal of Membrane Science, 2005, 265(1-2): 124-136
|
57 |
Peng M, Vane L M, Liu S X. Numerical simulation of concentration polarization in a pervaporation module. Separation Science and Technology, 2010, 39(6): 1239-1257
|
58 |
Liu S X, Peng M, Vane L. CFD modeling of pervaporative mass transfer in the boundary layer. Chemical Engineering Science, 2004, 59(24): 5853-5857
|
/
〈 | 〉 |