REVIEW ARTICLE

Computational fluid dynamics applied to high temperature hydrogen separation membranes

  • Guozhao JI 1 ,
  • Guoxiong WANG 1 ,
  • Kamel HOOMAN 2 ,
  • Suresh BHATIA 1 ,
  • João C. DINIZ da COSTA , 1
Expand
  • 1. School of Chemical Engineering, the University of Queensland, Brisbane 4072, Australia
  • 2. School of Mechanical and Mining Engineering, the University of Queensland, Brisbane 4072, Australia

Received date: 25 Oct 2011

Accepted date: 08 Jan 2012

Published date: 05 Mar 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This work reviews the development of computational fluid dynamics (CFD) modeling for hydrogen separation, with a focus on high temperature membranes to address industrial requirements in terms of membrane systems as contactors, or in membrane reactor arrangements. CFD modeling of membranes attracts interesting challenges as the membrane provides a discontinuity of flow, and therefore cannot be solved by the Navier-Stokes equations. To address this problem, the concept of source has been introduced to understand gas flows on both sides or domains (feed and permeate) of the membrane. This is an important solution, as the gas flow and concentrations in the permeate domain are intrinsically affected by the gas flow and concentrations in the feed domain and vice-versa. In turn, the source term will depend on the membrane used, as different membrane materials comply with different transport mechanisms, in addition to varying gas selectivity and fluxes. This work also addresses concentration polarization, a common effect in membrane systems, though its significance is dependent upon the performance of the membrane coupled with the operating conditions. Finally, CFD modeling is shifting from simplified single gas simulation to industrial gas mixtures, when the mathematical treatment becomes more complex.

Cite this article

Guozhao JI , Guoxiong WANG , Kamel HOOMAN , Suresh BHATIA , João C. DINIZ da COSTA . Computational fluid dynamics applied to high temperature hydrogen separation membranes[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(1) : 3 -12 . DOI: 10.1007/s11705-011-1161-5

Acknowledgments

Guozhao Ji specially thanks for the scholarship provided by the University of Queensland and the China Scholarship Council. The authors acknowledge funding support from the Australian Research Council (DP110101185).
Nomenclature
1
Marriott J I, Sørensen E, Bogle I D L. Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 2001, 25(4-6): 693-700

DOI

2
Wiley D E, Fletcher D F. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination, 2002, 145(1-3): 183-186

DOI

3
Huang L, Morrissey M T. Finite element analysis as a tool for crossflow membrane filter simulation. Journal of Membrane Science, 1999, 155(1): 19-30

DOI

4
Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chemical Engineering and Processing, 2006, 45(6): 437-454

DOI

5
Bao L, Lipscomb G G. Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules. Desalination, 2002, 146(1-3): 243-248

DOI

6
Lipscomb G G, Sonalkar S. Sources of non-ideal flow distribution and their effect on the performance of hollow fiber gas separation modules. Separation & Purification Reviews, 2005, 33(1): 41-76

DOI

7
Takaba H, Nakao S. Computational fluid dynamics study on concentration polarization in H2/CO separation membranes. Journal of Membrane Science, 2005, 249(1-2): 83-88

DOI

8
Abdel-jawad M M, Gopalakrishnan S, Duke M C, Macrossan M N, Schneider P S, Diniz da Costa J C. Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes. Journal of Membrane Science, 2007, 299(1-2): 229-235

DOI

9
Koros W J, Fleming G K. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1-80

DOI

10
McLellan B, Shoko E, Dicks A L, Diniz da Costa J C. Hydrogen production and utilisation opportunities for Australia. International Journal of Hydrogen Energy, 2005, 30(6): 669-679

DOI

11
Smart S, Lin C X C, Ding L, Thambimuthu K, Diniz da Costa J C. Ceramic membranes for gas processing in coal gasification. Energy & Environmental Science, 2010, 3(3): 268-278

DOI

12
Uhlmann D, Smart S, Diniz da Costa J C. H2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science, 2011, 380(1-2): 48-54

DOI

13
Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science, 2006, 274(1-2): 83-91

DOI

14
Wesseling P. Principles of Computational Fluid Dynamics. Berlin: Springer, 2010

15
Tu J, Yeoh G H, Liu C. Computational fluid dynamics: a practical approach. Cambridge: Butterworth-Heinemann, 2008

16
Anderson J D. Computational fluid dynamics: the basics with applications.New York: McGraw-Hill, 1995

17
Yacou C, Smart S, Diniz da Costa J C. Long term performance of cobalt oxide silica membrane module for high temperature H2 separation. Energy & Environmental Science, 2011,

DOI

18
Coroneo M, Montante G, Catalano J, Paglianti A. Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification. Journal of Membrane Science, 2009, 343(1-2): 34-41

DOI

19
Koukou M K, Chaloulou G, Papayannakos N, Markatos N C. Mathematical modelling of the performance of non-isothermal membrane reactors. International Journal of Heat and Mass Transfer, 1997, 40(10): 2407-2417

DOI

20
Koukou M K, Papayannakos N, Markatos N C. Dispersion effects on membrane reactor performance. AIChE Journal. American Institute of Chemical Engineers, 1996, 42(9): 2607-2615

DOI

21
Koukou M K, Papayannakos N, Markatos N C. On the importance of non-ideal flow effects in the operation of industrial-scale adiabatic membrane reactors. Chemical Engineering Journal, 2001, 83(2): 95-105

DOI

22
Koukou M K, Papayannakos N, Markatos N C, Bracht M, Alderliesten P T. Simulation tools for the design of industrial-scale membrane reactors. Chemical Engineering Research & Design, 1998, 76(8): 911-920

DOI

23
Koukou M K, Papayannakos N, Markatos N C, Bracht M, Van Veen H M, Roskam A. Performance of ceramic membranes at elevated pressure and temperature: effect of non-ideal flow conditions in a pilot scale membrane separator. Journal of Membrane Science, 1999, 155(2): 241-259

DOI

24
Kawachale N, Kumar A, Kirpalani D M. Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes. Chemical Engineering & Technology, 2008, 31(1): 58-65

DOI

25
Kawachale N, Kumar A, Kirpalani D M. A flow distribution study of laboratory scale membrane gas separation cells. Journal of Membrane Science, 2009, 332(1-2): 81-88

DOI

26
Kawachale N, Kirpalani D M, Kumar A. A mass transport and hydrodynamic evaluation of membrane separation cell. Chemical Engineering and Processing: Process Intensification, 2010, 49(7): 680-688

DOI

27
de Lange R S A, Hekkink J H A, Keizer K, Burggraaf A J, Ma Y H. Sorption studies of microporous sol-gel modified ceramic membranes. Journal of Porous Materials, 1995, 2(2): 141-149

DOI

28
Diniz da Costa J C, Lu G Q, Rudolph V, Lin Y S, Novel molecular sieve silica (MSS) membranes: characterisation and permeation of single-step and two-step sol-gel membranes. Journal of Membrane Science, 2002, 198(1): 9-21

DOI

29
Barrer R M. Porous crystal membranes. Journal of the Chemical Society, Faraday Transactions, 1990, 86(7): 1123-1130

DOI

30
Krishna R, Baur R. Analytic solution of the Maxwell-Stefan equations for multicomponent permeation across a zeolite membrane. Chemical Engineering Journal, 2004, 97(1): 37-45

DOI

31
Krishna R, van Baten J M. Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials. Chemical Engineering Science, 2009, 64(13): 3159-3178

DOI

32
Krishna R, van Baten J M. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes. Journal of Membrane Science, 2011, 369(1-2): 545-549

DOI

33
Krishna R, van Baten J M. Maxwell-Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. Journal of Membrane Science, 2011, 383(1-2): 289-300

DOI

34
Krishna R, Wesselingh J A. The Maxwell-Stefan approach to mass transfer. Chemical Engineering Science, 1997, 52(6): 861-911

DOI

35
Damak K, Ayadi A, Zeghmati B, Schmitz P. A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes. Desalination, 2004, 161(1): 67-77

DOI

36
Das D B, Nassehi V, Wakeman R J. A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions. Advances in Environmental Research, 2002, 7(1): 35-58

DOI

37
Pak A, Mohammadi T, Hosseinalipour S M, Allahdini V. CFD modeling of porous membranes. Desalination, 2008, 222(1-3): 482-488

DOI

38
Caravella A, Barbieri G, Drioli E. Concentration polarization analysis in self-supported Pd-based membranes. Separation and Purification Technology, 2009, 66(3): 613-624

DOI

39
Haraya K, Hakuta T, Yoshitome H, Kimura S. A study of concentration polarization phenomenon on the surface of a gas separation membrane. Separation Science and Technology, 1987, 22(5): 1425-1438

DOI

40
He G, Mi Y, Lock Yue P, Chen G. Theoretical study on concentration polarization in gas separation membrane processes. Journal of Membrane Science, 1999, 153(2): 243-258

DOI

41
Mourgues A, Sanchez J. Theoretical analysis of concentration polarization in membrane modules for gas separation with feed inside the hollow-fibers. Journal of Membrane Science, 2005, 252(1-2): 133-144

DOI

42
Nemmani R G, Suggala S V. An explicit solution for concentration polarization for gas separation in a hollow fiber membrane. Separation Science and Technology, 2010, 45(5): 581-591

DOI

43
Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. Journal of Membrane Science, 2006, 274(1-2): 83-91

DOI

44
Coroneo M, Montante G, Giacinti Baschetti M, Paglianti A. CFD modelling of inorganic membrane modules for gas mixture separation. Chemical Engineering Science, 2009, 64(5): 1085-1094

DOI

45
Nair B K R, Harold M P. Experiments and modeling of transport in composite Pd and Pd/Ag coated alumina hollow fibers. Journal of Membrane Science, 2008, 311(1-2): 53-67

DOI

46
Chasanis P, Kenig E Y, Hessel V, Sehmitt S. Modelling and simulation of a membrane microreactor using computational fluid dynamics. Amsterdam: Elsevier, 2008

47
Mori N, Nakamura T, Noda K, Sakai O, Takahashi A, Ogawa N, Sakai H, Iwamoto Y, Hattori T. Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane. Industrial & Engineering Chemistry Research, 2007, 46(7): 1952-1958

DOI

48
Coroneo M, Montante G, Paglianti A P. Numerical and experimental fluid-dynamic analysis to improve the mass transfer performances of Pd-Ag membrane modules for hydrogen purification. Industrial & Engineering Chemistry Research, 2010, 49(19): 9300-9309

DOI

49
Battersby S, Duke M C, Liu S, Rudolph V, Costa J C D. Metal doped silica membrane reactor: operational effects of reaction and permeation for the water gas shift reaction. Journal of Membrane Science, 2008, 316(1-2): 46-52

DOI

50
Battersby S, Tasaki T, Smart S, Ladewig B, Liu S, Duke M C, Rudolph V, Diniz da Costa J C. Performance of cobalt silica membranes in gas mixture separation. Journal of Membrane Science, 2009, 329(1-2): 91-98

DOI

51
Battersby S, Teixeira P W, Beltramini J, Duke M C, Rudolph V, Diniz da Costa J C. An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors. Catalysis Today, 2006, 116(1): 12-17

DOI

52
Sholl D S, Johnson J K. Materials science. Making high-flux membranes with carbon nanotubes. Science, 2006, 312(5776): 1003-1004

DOI PMID

53
Leo A, Liu S, Diniz da Costa J C. Production of pure oxygen from BSCF hollow fiber membranes using steam sweep. Separation and Purification Technology, 2011, 78(2): 220-227

DOI

54
Leo A, Smart S, Liu S, Diniz da Costa J C. High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science, 2011, 368(1-2): 64-68

DOI

55
Feron P, van Heuven J W, Akkerhuis J J, van der Welle R. Design and development of a membrane testcell with uniform mass transfer: application to characterisation of high flux gas separation membranes. Journal of Membrane Science, 1993, 80(1): 157-194

DOI

56
Liu S, Peng M, Vane L. CFD simulation of effect of baffle on mass transfer in a slit-type pervaporation module. Journal of Membrane Science, 2005, 265(1-2): 124-136

DOI

57
Peng M, Vane L M, Liu S X. Numerical simulation of concentration polarization in a pervaporation module. Separation Science and Technology, 2010, 39(6): 1239-1257

DOI

58
Liu S X, Peng M, Vane L. CFD modeling of pervaporative mass transfer in the boundary layer. Chemical Engineering Science, 2004, 59(24): 5853-5857

DOI

Outlines

/