Front. Chem. Sci. Eng. All Journals
REVIEW ARTICLE

Recent progress in hydrodynamic characteristics research and application of annular centrifugal extractors

  • Hang Yang 1 ,
  • Xiaoyong Yang 1 ,
  • Xiao Dong 1 ,
  • Zhaojin Lu 1 ,
  • Zhishan Bai , 1 ,
  • Yinglei Wang 2 ,
  • Fulei Gao 2
Expand
  • 1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 2. Xi’an Modern Chemistry Research Institute, Xi’an 710000, China

Received date: 04 Nov 2021

Accepted date: 31 Dec 2021

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press

Abstract

The annular centrifugal extractor (ACE) integrates mixing and separation. It has been widely used in many industrial fields because of its low residence time, compact structure, and high mass transfer efficiency. Most of the literature has focused on flow instabilities, flow visualization, and computational fluid dynamics simulations. More recently, research on hydrodynamic behavior and structural optimization has received widespread attention. With the development of ACE technology, applications have been broadened into several new areas. Hence, this paper reviews research progress regarding ACE in terms of hydrodynamic characteristics and the structural improvements. The latest applications covering hydrometallurgy, nuclear fuel reprocessing, bio-extraction, catalytic reaction, and wastewater treatment are presented. We also evaluate future work in droplet breakup and coalescence mechanisms, structural improvements specific to different process requirements, scaling-up methods, and stability and reliability after scaling-up.

Cite this article

Hang Yang, Xiaoyong Yang, Xiao Dong, Zhaojin Lu, Zhishan Bai, Yinglei Wang, Fulei Gao. Recent progress in hydrodynamic characteristics research and application of annular centrifugal extractors[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 854-873. DOI: 10.1007/s11705-022-2156-0

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 22078102) and the Shanghai Sailing Program, China (Grant No. 21YF1409500).
1
HerediaV, PruvostJ, GonçalvesO, DrouinD, MarchalL. Lipid recovery from nannochloropsis gaditana using the wet pathway: investigation of the operating parameters of bead milling and centrifugal extraction. Algal Research, 2021, 56 : 102318

DOI

2
DeshpandeJ B, NavaleG R, DharneM S, KulkarniA A. Continuous interfacial centrifugal separation and recovery of silver nanoparticles. Chemical Engineering & Technology, 2020, 43( 3): 582– 592

DOI

3
ZhangP L, WangS C, TangK W, XuW F, QiuY R, XiongB Q, LiuY. Multistage enantioselective reactive extraction of terbutaline enantiomers by hydrophobic phase transfer: experiment and modeling. Separation and Purification Technology, 2018, 191 : 208– 215

DOI

4
ZhangP L, WangS C, TangK W, XuW F, HeF, QiuY R. Modeling multiple chemical equilibrium in chiral extraction of metoprolol enantiomers from single-stage extraction to fractional extraction. Chemical Engineering Science, 2018, 177 : 74– 88

DOI

5
ZhangP L, FengX F, TangK W, XuW F. Study on enantioseparation of α-cyclopentyl-mandelic acid enantiomers using continuous liquid–liquid extraction in centrifugal contactor separators: experiments and modeling. Chemical Engineering and Processing, 2016, 107 : 168– 176

DOI

6
TangK W, WangY Q, ZhangP L, HuangY, HuaJ. Optimization study on continuous separation of equol enantiomers using enantioselective liquid–liquid extraction in centrifugal contactor separators. Process Biochemistry, 2016, 51( 1): 113– 123

DOI

7
JingX H, NingP G, CaoH B, SunZ, WangJ Y. Separation of V(V) and Cr(VI) in leaching solution using annular centrifugal contactors. Chemical Engineering Journal, 2017, 315 : 373– 381

DOI

8
JingX H, WangJ Y, CaoH B, NingP G, SunZ. Rapid selective extraction of V(V) from leaching solution using annular centrifugal contactors and stripping for NH4VO3. Separation and Purification Technology, 2017, 187 : 407– 414

DOI

9
MiaoQ D, SunT X, ChenH L, ZhengQ, DuanW H. Comparison of the hydraulic characteristics of the 30% TRPO/kerosene-HNO3 and iPr-C[4]C-6/n-octanol-HNO3 systems in an annular centrifugal extractor. Progress in Nuclear Energy, 2021, 136 : 103734

DOI

10
MohapatraP K, VermaP K, PrabhuD R, RautD R. Extraction of 137Cs from acidic feed by centrifugal contactors using a solution of calix[4]arene-bis-1,2-benzo-crown-6 in phenyltrifluoromethyl sulphone. Nuclear Technology, 2019, 205( 8): 1119– 1125

DOI

11
SchuurB, WinkelmanJ G M, de VriesJ G, HeeresH J. Experimental and modeling studies on the enantio-separation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid–liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 2010, 65( 16): 4682– 4690

DOI

12
BernsteinG, GrosvenorD, LencJ, LevitzN. A high-capacity annular centrifugal contactor. Nuclear Technology, 1973, 20( 3): 200– 202

DOI

13
VedantamS, JoshiJ B. Annular centrifugal contactors—a review. Chemical Engineering Research & Design, 2006, 84( 7): 522– 542

DOI

14
VedantamS, WardleK E, TamhaneT V, RanadeV V, JoshiJ B. CFD simulation of annular centrifugal extractors. International Journal of Chemical Engineering, 2012, 2012 : 759397

DOI

15
DuanW H, ZhaoM M, WangC Q, CaoS. Recent advances in the development and application of annular centrifugal contactors in the nuclear industry. Solvent Extraction and Ion Exchange, 2014, 32( 1): 1– 26

DOI

16
JingX H, NingP G, CaoH B, WangJ Y, SunZ. A review of application of annular centrifugal contactors in aspects of mass transfer and operational security. Hydrometallurgy, 2018, 177 : 41– 48

DOI

17
JosephD D, NguyenK, BeaversG S. Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities. Journal of Fluid Mechanics, 1984, 141 : 319– 345

DOI

18
CamperoR J, VigilR D. Spatiotemporal patterns in liquid–liquid Taylor–Couette–Poiseuille flow. Physical Review Letters, 1997, 79( 20): 3897– 3900

DOI

19
ZhuX, VigilR D. Banded liquid–liquid Taylor–Couette–Poiseuille flow. AIChE Journal. American Institute of Chemical Engineers, 2001, 47( 9): 1932– 1940

DOI

20
SatheM J, DeshmukhS S, JoshiJ B, KogantiS B. Computational fluid dynamics simulation and experimental investigation: study of two-phase liquid–liquid flow in a vertical Taylor–Couette contactor. Industrial & Engineering Chemistry Research, 2010, 49( 1): 14– 28

DOI

21
CampbellC, OlsenM G, Dennis VigilR. Flow regimes in two-phase hexane/water semibatch vertical Taylor vortex flow. Journal of Fluids Engineering, 2019, 141( 11): 111203

DOI

22
CampbellC, OlsenM G, VigilR D. Jet breakup regimes in liquid–liquid Taylor vortex flow. International Journal of Multiphase Flow, 2020, 131 : 103401

DOI

23
BaierG, GrahamM D. Two-fluid Taylor–Couette flow: experiments and linear theory for immiscible liquids between corotating cylinders. Physics of Fluids, 1998, 10( 12): 294– 303

DOI

24
NakaseM, MakabeR, TakeshitaK. Relation between oil–water flow and extraction performance in liquid–liquid countercurrent centrifugal extractors with Taylor vortices. Journal of Nuclear Science and Technology, 2013, 50( 3): 287– 295

DOI

25
ChenM X, XieT L, XuC. Continuous counter-current centrifugal extraction column with high throughput using a spiral inner cylinder. Chemical Engineering and Processing, 2018, 125 : 1– 7

DOI

26
XuY, WangJ G, ZhaoS L, BaiZ S. PIV experimental study on the flow field in the rotor zone of an annular centrifugal contactor. Chemical Engineering Research & Design, 2015, 94 : 691– 701

DOI

27
PatraJ, PandeyN K, MuduliU K, NatarajanR, JoshiJ B. Hydrodynamic study of flow in the rotor region of annular centrifugal contactors using CFD simulation. Chemical Engineering Communications, 2013, 200( 4): 471– 493

DOI

28
WardleK E, AllenT R, SwaneyR. CFD simulation of the separation zone of an annular centrifugal contactor. Separation Science and Technology, 2009, 44( 3): 517– 542

DOI

29
YangX Y. Study on synergetic treatment of sodium sulfate wastewater from coal tar processing by ternary solvent and centrifugal extraction. Dissertation for the Doctoral Degree. Shanghai: East China University of Science and Technology, 2019, 97– 106 (in Chinese)

30
LiS W, DuanW H, ChenJ, WangJ C. CFD simulation of gas-liquid–liquid three-phase flow in an annular centrifugal contactor. Industrial & Engineering Chemistry Research, 2012, 51( 34): 11245– 11253

DOI

31
GandhirA, WardleK E. CFD analysis of fluid flow above the upper weir of an annular centrifugal contactor. Separation Science and Technology, 2012, 47( 1): 1– 10

DOI

32
AyyappaS V N, BalamuruganM, KumarS, Kamachi MudaliU. Mass transfer and hydrodynamic studies in a 50 mm diameter centrifugal extractor. Chemical Engineering and Processing, 2016, 105 : 30– 37

DOI

33
KadamB D, JoshiJ B, KogantiS B, PatilR N. Dispersed phase hold-up, effective interfacial area and Sauter mean drop diameter in annular centrifugal extractors. Chemical Engineering Research & Design, 2009, 87( 10): 1379– 1389

DOI

34
DavisM W, WeberE J. Liquid–liquid extraction between rotating concentric cylinders. Industrial & Engineering Chemistry, 1960, 52( 11): 929– 934

DOI

35
GrafschafterA, SiebenhoferM. Design rules for the Taylor–Couette disc contactor. Chemie Ingenieur Technik (Weinheim), 2017, 89( 4): 409– 415

DOI

36
De SantisA, HansonB C, FairweatherM. Hydrodynamics of annular centrifugal contactors: a CFD analysis using a novel multiphase flow modelling approach. Chemical Engineering Science, 2021, 242 : 116729

DOI

37
WyattN B, O’HernT J, SheldenB. Drop-size distributions and spatial distributions in an annular centrifugal contactor. AIChE Journal. American Institute of Chemical Engineers, 2013, 59( 6): 2219– 2226

DOI

38
CampbellC, OlsenM, VigilR. Droplet size distributions in liquid–liquid semi-batch Taylor vortex flow. AIP Advances, 2020, 10( 8): 085316

DOI

39
WardleK E. Liquid–liquid mixing studies in annular centrifugal contactors comparing stationary mixing vane options. Solvent Extraction and Ion Exchange, 2015, 33( 7): 671– 690

DOI

40
TamhaneT V, JoshiJ B, MudaliK, NatarajanR, PatilR N. Measurement of drop size characteristics in annular centrifugal extractors using phase doppler particle analyzer (PDPA). Chemical Engineering Research & Design, 2012, 90( 8): 985– 597

DOI

41
SchuurB, KraaiG N, WinkelmanJ G M, HeeresH J. Hydrodynamic features of centrifugal contactor separators: experimental studies on liquid hold-up, residence time distribution, phase behavior and drop size distributions. Chemical Engineering and Processing, 2012, 55 : 8– 19

DOI

42
KumarS, MudaliK. Experimental measurements of drop size distributions in 30 mm diameter annular centrifugal contactor with 30% TBP-nitric acid biphasic system. International Journal of Nuclear Energy, 2013, 2013 : 402505

DOI

43
DreweryS, HeeresE, PercivalS, RhodesC, GeorgeM S, WilbersE, WoodheadD A. Experimental and modelling studies of mass transfer in centrifugal contactors. Procedia Chemistry, 2012, 7 : 341– 348

DOI

44
NakaseM, KinuhataH, TakeshitaK. Multi-staging for extraction of cesium from nitric acid by a single liquid–liquid countercurrent centrifugal extractor with Taylor vortices. Journal of Nuclear Science and Technology, 2013, 50( 11): 1089– 1098

DOI

45
NakaseM, TakeshitaK. Numerical and experimental study on oil-water dispersion in new countercurrent centrifugal extractor. Procedia Chemistry, 2012, 7 : 288– 294

DOI

46
HaasP A. Turbulent dispersion of aqueous drops in organic liquids. AIChE Journal. American Institute of Chemical Engineers, 1987, 33( 6): 987– 995

DOI

47
FarzadR, PuttingerS, PirkerS, SchneiderbauerS. Investigation of droplet size distribution for liquid–liquid emulsions in Taylor−Couette flows. Journal of Dispersion Science and Technology, 2017, 39( 2): 250– 258

DOI

48
CoulaloglouC A, TavlaridesL L. Description of interaction processes in agitated liquid–liquid dispersions. Chemical Engineering Science, 1977, 32( 11): 1289– 1297

DOI

49
EskinD, TaylorS D, YangD. Modeling of droplet dispersion in a turbulent Taylor–Couette flow. Chemical Engineering Science, 2017, 161 : 36– 47

DOI

50
EggertA, SibirtsevS, MenneD, JupkeA. Liquid–liquid centrifugal separation—new equipment for optical (photographic) evaluation at laboratory scale. Chemical Engineering Research & Design, 2017, 127 : 170– 179

DOI

51
FridjonssonE, ChandrasekeraT, SedermanA J, JohnsM, ZhaoC, MiddelbergA. Imaging the effects of peptide bio-surfactants on droplet deformation in a Taylor–Couette shear cell. Soft Matter, 2011, 7( 6): 2961– 2967

DOI

52
QiaoJ, DengR S, WangC H. Droplet behavior in a Taylor vortex. International Journal of Multiphase Flow, 2014, 67 : 132– 139

DOI

53
WardleK. Hybrid multiphase CFD simulation for liquid–liquid interfacial area prediction in annular centrifugal contactors. In: Proceedings of International Nuclear Fuel Cycle Conference, GLOBAL 2013: Nuclear Energy at a Crossroads. La Grange Pork, IL: Americen Nuclear Society, 2013

54
MartinA D. Interpretation of residence time distribution data. Chemical Engineering Science, 2000, 55( 23): 5907– 5917

DOI

55
TamhaneT V, JoshiJ B, Kamachi MudaliU, NatarajanR, PatilR N. Axial mixing in annular centrifugal extractors. Chemical Engineering Journal, 2012, 207-208 : 462– 472

DOI

56
LevenspielO. Chemical Reaction Engineering. New York: John Wiley & Sons, 1999: 321– 324

57
DeshmukhS S, SatheM J, JoshiJ B, KogantiS B. Residence time distribution and flow patterns in the single-phase annular region of annular centrifugal extractor. Industrial & Engineering Chemistry Research, 2009, 48( 1): 37– 46

DOI

58
VedantamS, JoshiJ B, KogantiS B. CFD Simulation of RTD and mixing in the annular region of a Taylor–Couette contactor. Industrial & Engineering Chemistry Research, 2006, 45( 18): 6360– 6367

DOI

59
DuanW H, SunT X, WangJ H. Separation of Nd3+ and Fe3+ by non-equilibrium solvent extraction using an annular centrifugal contactor. Separation and Purification Technology, 2015, 146 : 108– 113

DOI

60
ZhaoM M, CaoS, DuanW H. Effects of some parameters on mass-transfer efficiency of a ϕ20 mm annular centrifugal contactor for nuclear solvent extraction processes. Progress in Nuclear Energy, 2014, 74 : 154– 159

DOI

61
BaiZ S, ZhangJ, GanR W, XuY, LiuW J. Effect of cylinder rotation on flow characteristics of the annular region in annular centrifugal extractor. Separation Science and Technology, 2015, 50( 6): 813– 819

DOI

62
BrownM A, WardleK E, LumettaG, GelisA V. Accomplishing equilibrium in ALSEP: demonstrations of modified process chemistry on 3D printed enhanced annular centrifugal contactors. Procedia Chemistry, 2016, 21 : 167– 173

DOI

63
ManavalanB, JoshiJ B, PandeyN K. Design modification in the stationary bowl of annular centrifugal extractors to handle adverse conditions. Industrial & Engineering Chemistry Research, 2020, 59( 25): 11757– 11766

DOI

64
WardleK E, AllenT R, AndersonM H, SwaneyR E. Analysis of the effect of mixing vane geometry on the flow in an annular centrifugal contactor. AIChE Journal. American Institute of Chemical Engineers, 2009, 55( 9): 2244– 2259

DOI

65
DengR, Yohanes ArifinD, Ye ChynM, WangC H. Taylor vortex flow in presence of internal baffles. Chemical Engineering Science, 2010, 65( 16): 4598– 4605

DOI

66
DeshmukhS S, JoshiJ B, KogantiS B. Flow visualization and three-dimensional CFD simulation of the annular region of an annular centrifugal extractor. Industrial & Engineering Chemistry Research, 2008, 47( 10): 3677– 3686

DOI

67
SuY G, TangJ X, YangX X, WangR J. Effect of geometrical parameters on extraction efficiency of the annular centrifugal contactor. Separations, 2021, 8( 102): 1– 11

DOI

68
FanZ Bai Z S XuY YangX Y. Effects of centrifugal extractor cylinder inlet radius on the cylinder flow field. Chemical Industry and Engineering Progress, 2015, 34(5): 1232– 1235 (in Chinese)

69
GhayaH, GuizaniR, MhiriH, BournotP. CFD study of the effect of geometrical shape of separation blades on the rotor performance of an annular centrifugal extractor (ACE). Journal of Applied Fluid Mechanics, 2019, 12( 4): 1189– 1202

DOI

70
FanX B, YuX P, GuoY F, DengT L. Recovery of boron from underground brine by continuous centrifugal extraction with 2-ethyl-1,3-hexanediol (EHD) and its mechanism. Journal of Chemistry, 2018, 2018 : 7530837

DOI

71
YuX P, FanX B, GuoY F, DengT L. Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate. Separation and Purification Technology, 2019, 211 : 790– 798

DOI

72
AbramovA M, VolobuevO I, GalievaZ N, Sobol’Y B, SolodovnikovA V, YachmenovA A, KuznetsovG I, KosogorovA V, TrusilovN N. Separating rare-earth elements on centrifugal extractors: developing technology, designing equipment, and engineering production. Theoretical Foundations of Chemical Engineering, 2020, 54( 4): 762– 768

DOI

73
HeQ Qiu J ChenJ F ZanM M XiaoY F. Progress in green and efficient enrichment of rare earth from the leaching liquor of ion adsorption type rare earth ores. Journal of Rare Earths, 2021, (in press)

74
WangL S, YuY, LiuY, LongZ Q. Centrifugal extraction of rare earths from wet-process phosphoric acid. Rare Metals, 2011, 30( 3): 211– 215

DOI

75
ChenH L, ZhengQ, DuanW H. Hydraulic characteristics of n-octanol/aqueous solution systems in a 25-mm annular centrifugal extractor. Separation Science and Technology, 2020, 55( 8): 1515– 1523

DOI

76
ChenH L, WangJ C, DuanW H, ChenJ. Hydrodynamic characteristics of 30% TBP/kerosene-HNO3 solution system in an annular centrifugal contactor. Nuclear Science and Techniques, 2019, 30( 89): 1– 12

DOI

77
DuanW H, SunT X, WangJ C. An industrial-scale annular centrifugal extractor for the TRPO process. Nuclear Science and Techniques, 2018, 29( 46): 1– 9

DOI

78
TakeuchiM, OginoH, NakabayashiH, AraiY, WashiyaT, KaseT, NakajimaY. Extraction and stripping tests of engineering-scale centrifugal contactor cascade system for spent nuclear fuel reprocessing. Journal of Nuclear Science and Technology, 2009, 46( 3): 217– 225

DOI

79
MeikrantzD H, GarnT G, LawJ D, MacalusoL L. A centrifugal contactor design to facilitate remote replacement. Nuclear Technology, 2011, 173( 3): 289– 299

DOI

80
LawJ D, MeikrantzD H, GarnT G, MacalusoL L. Advanced remote maintenance design for pilot-scale centrifugal contactors. Nuclear Technology, 2011, 173( 2): 191– 199

DOI

81
WangW R, ZhangP L, OuJ, LiuF S, TangK W, XuW F. Selective extraction of ECG from tea polyphenols by one step in centrifugal contactor separators: modeling and application. Industrial & Engineering Chemistry Research, 2019, 58( 5): 2027– 2035

DOI

82
MichailidisD, AngelisA, AligiannisN, MitakouS, SkaltsounisL. Recovery of sesamin, sesamolin, and minor lignans from sesame oil using solid support-free liquid–liquid extraction and chromatography techniques and evaluation of their enzymatic inhibition properties. Frontiers in Pharmacology, 2019, 10 : 1– 13

DOI

83
AngelisA, MichailidisD, AntoniadiL, StathopoulosP, TsantilaV, NuzillardJ M, RenaultJ H, SkaltsounisL A. Pilot continuous centrifugal liquid–liquid extraction of extra virgin olive oil biophenols and gram-scale recovery of pure oleocanthal, oleacein, MFOA, MFLA and hydroxytyrosol. Separation and Purification Technology, 2021, 255 : 117692

DOI

84
ZhangY C, LiuR Y, LiuC M, LiS N, TsaoR. Development of ultrasound-assisted mixture extraction and online extraction solution concentration coupled with countercurrent chromatography for the preparation of pure phytochemicals from Phellinus vaninii. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1171 : 122619

DOI

85
ZhangY C, LiuR Y, LiuC M, LiS N, HouW C. Development of ultrasound-assisted centrifugal extraction combined with two countercurrent chromatography systems for the simultaneous extraction and isolation of phytochemicals. Journal of Separation Science, 2021, 44( 11): 2279– 2289

DOI

86
ZhangY C, LiuC M, LiS N, HouW C, TsaoR. Development of ultrasound-assisted centrifugal extraction and online solvent concentration coupled with parallel countercurrent chromatography for the preparation of purified phytochemicals: application to Lycium ruthenicum. Industrial Crops and Products, 2021, 162 : 113266

DOI

87
KraaiG N, van ZwolF, SchuurB, HeeresH J, de VriesJ G. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator. Angewandte Chemie, 2007, 120( 21): 3969– 3972

DOI

88
KraaiG N, SchuurB, van ZwolF, van de BovenkampH H, HeeresH J. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device. Chemical Engineering Journal, 2009, 154( 1): 384– 389

DOI

89
AbduhM Y, van UldenW, KalpoeV, van de BovenkampH H, ManurungR, HeeresH J. Biodiesel synthesis from Jatropha curcas L. oil and ethanol in a continuous centrifugal contactor separator. European Journal of Lipid Science and Technology, 2013, 115( 1): 123– 131

DOI

90
AbduhM Y, van UldenW, van de BovenkampH H, BuntaraT, PicchioniF, ManurungR, HeeresH J. Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators. European Journal of Lipid Science and Technology, 2015, 117( 2): 242– 254

DOI

91
FayyaziE, GhobadianB, Safieddin ArdebiliS M, NajafiG, MousaviS M, Hosseinzadeh SamaniB, YueJ. Biodiesel fuel purification in a continuous centrifugal contactor separator: an environmental-friendly approach. Sustainable Energy Technologies and Assessments, 2021, 47 : 101511

DOI

92
IlmiM, KloekhorstA, WinkelmanJ G M, EuverinkG J W, HidayatC, HeeresH J. Process intensification of catalytic liquid–liquid solid processes: continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator. Chemical Engineering Journal, 2017, 321 : 76– 85

DOI

93
FayyaziE, GhobadianB, van de BovenkampH H, NajafiG, HosseinzadehsamaniB, HeeresH J, YueJ. Optimization of biodiesel production over chicken eggshell-derived CaO catalyst in a continuous centrifugal contactor separator. Industrial & Engineering Chemistry Research, 2018, 57( 38): 12742– 12755

DOI

94
XuY, TangK, BaiZ S, WangH L. Hydrodynamic and mass-transfer characteristics of annular centrifugal contactors on the caprolactam recovery from waste liquor. Applied Mechanics and Materials, 2013, 330 : 792– 798

DOI

95
HaoM M, BaiZ S, WangH L, LiuW J. Removal of oil from electric desalting wastewater using centrifugal contactors. Journal of Petroleum Science Engineering, 2013, 111 : 37– 41

DOI

96
YangX Y, WangB J, LuoH Q, YanS L, DaiJ, BaiZ S. Efficient recovery of phenol from coal tar processing wastewater with tributylphosphane/diethyl carbonate/cyclohexane: extraction cycle and mechanism study. Chemical Engineering Research & Design, 2020, 157 : 104– 113

DOI

97
YangX Y, BaiZ S, WangB J, JieF P. Optimal ternary extractant for phenol removal from wastewater: modeling and application. Separation Science and Technology, 2019, 54( 1): 69– 78

DOI

98
JieF P, BaiZ S, YangX Y. Study on extraction of cobalt(II) by sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system. Journal of Radioanalytical and Nuclear Chemistry, 2018, 315( 3): 581– 593

DOI

99
JieF P, BaiZ S, YangX Y. Extraction of Mn(II) from NaCl solution by NaCl/sodium oleate/n-pentanol/n-heptane microemulsion system. Separation Science and Technology, 2018, 53( 9): 1351– 1360

DOI

100
YangX Y, JieF P, WangB J, BaiZ S. High-efficient synergistic extraction of Co(II) and Mn(II) from wastewater via novel microemulsion and annular centrifugal extractor. Separation and Purification Technology, 2019, 209 : 997– 1006

DOI

101
EggertA, KoglT, ArltW, JupkeA. Computer tomographic detection of the liquid–liquid mixing and separation within the annular centrifugal contactor/extractor. Chemical Engineering Research & Design, 2019, 142 : 143– 153

DOI

/