Frontiers of Chemical Science and Engineering >
The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts
Received date: 13 Aug 2021
Accepted date: 03 Nov 2021
Published date: 02 Aug 2022
Copyright
Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.
Xin Li , Meng Su , Yao Chen , Mehar U. Nisa , Ning Zhao , Xiangning Jiang , Zhenhua Li . The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(8) : 1224 -1236 . DOI: 10.1007/s11705-022-2139-1
1 |
MaitlisP M, ZanottiV. The role of electrophilic species in the Fischer–Tropsch reaction. Chemical Communications, 2009, 220( 2): 1619– 1634
|
2 |
AbasN, KalairA, KhanN. Review of fossil fuels and future energy technologies. Futures, 2015, 69 : 31– 49
|
3 |
AnY, LinT, YuF, YangY, ZhongL, WuM, SunY. Advances in direct production of value-added chemicals via syngas conversion. Science China. Chemistry, 2017, 60( 7): 887– 903
|
4 |
SilasK, GhaniW A W A K, ChoongT S Y, RashidU. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: a review. Catalysis Reviews, 2019, 61( 1): 134– 161
|
5 |
MartínezA, LópezC, MárquezF, DíazI. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor and promoters. Journal of Catalysis, 2003, 220( 2): 486– 499
|
6 |
DryM E F T. Catalysts. 1st ed. Besloten Vennootschap: Elsevier, 2004: 533– 600
|
7 |
BehroozsarandA, ZamaniyanA. Simulation and optimization of an integrated GTL process. Journal of Cleaner Production, 2017, 142 : 2315– 2327
|
8 |
GualA, GodardC, CastillónS, Curulla-FerréD, ClaverC. Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183( 1): 154– 171
|
9 |
Vande Loosdrecht J, CiobîcăI M, GibsonP, GovenderN S, MoodleyD J, SaibA M, WeststrateC J, NiemantsverdrietJ W. Providing fundamental and applied insights into Fischer–Tropsch catalysis. ACS Catalysis, 2016, 6( 6): 3840– 3855
|
10 |
JahangiriH, BennettJ, MahjoubiP, WilsonK, GuS. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 2014, 4( 8): 2210– 2229
|
11 |
OkabeK, MurataK, NakanishiM, OgiT, NurunnabiM, LiuY. Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 2008, 128( 1-2): 171– 176
|
12 |
ZhangQ, KangJ, WangY. Development of novel catalysts for Fischer–Tropsch synthesis: turning the product selectivity. ChemCatChem, 2010, 2( 9): 1030– 1058
|
13 |
LiuR J, XuY, QiaoY, LiZ H, MaX B. Factors influencing the Fischer–Tropsch synthesis performance of iron-based catalyst: iron oxide dispersion, distribution and reducibility. Fuel Processing Technology, 2015, 139 : 25– 32
|
14 |
MoazamiN, WyszynskiM L, RahbarK, TsolakisA, MahmoudiH. A comprehensive study of kinetics mechanism of Fischer–Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017, 171 : 32– 60
|
15 |
KhodakovA Y, ChuW, FongarlandP. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 2007, 107( 5): 1692– 1744
|
16 |
GaoY, WangJ, LyuY Q, LamK, CiucciF. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5( 14): 6399– 6404
|
17 |
LiuY, MurataK, OkabeK, HanaokaT, SakanishiK. Synthesis of Zr-grafted SBA-15 as an effective support for cobalt catalyst in Fischer–Tropsch synthesis. Chemistry Letters, 2008, 37( 9): 984– 985
|
18 |
GongJ, BaoX. Fundamental insights into interfacial catalysis. Chemical Society Reviews, 2017, 46( 7): 1770– 1771
|
19 |
PennerS, ArmbrüsterM. Formation of intermetallic compounds by reactive metal-support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem, 2015, 7( 3): 374– 392
|
20 |
AldanaP A U, OcampoF, KoblK, LouisB, Thibault-StarzykF, DaturiM, BazinP, ThomasS, RogerA C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 2013, 215 : 201– 207
|
21 |
StorsæterS, TøtdalB, WalmsleyJ C, TanemB S, HolmenA. Characterization of alumina-, silica- and titania-supported cobalt Fischer–Tropsch catalysts. Journal of Catalysis, 2005, 236( 1): 139– 152
|
22 |
MendesF M T, PerezC A C, NoronhaF B, SouzaC D D, CesarD V, FreundH J, SchmalM. Fischer–Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. Journal of Physical Chemistry B, 2006, 110( 18): 9155– 9163
|
23 |
MejíaC H, vander Hoeven J E S, deJongh P E, DeJong K P. Cobalt-nickel nanoparticles supported on reducible oxides as Fischer–Tropsch catalysts. ACS Catalysis, 2020, 10( 13): 7343– 7354
|
24 |
PrietoG, DeMello M, ConcepciónP, MurcianoR, PergherS B C, MartínezA. Cobalt-catalyzed Fischer–Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catalysis, 2015, 5( 6): 3323– 3335
|
25 |
HernandezM C, van DeelenT W, de JongK P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nature Communications, 2018, 9( 1): 4459
|
26 |
LiuY, DeT B, VigneronF, FloreaI, ErsenO, MenyC, NguyenP, PhamC, LuckF, Pham-HuuC. Titania-decorated silicon carbide-containing cobalt catalyst for Fischer–Tropsch synthesis. ACS Catalysis, 2013, 3( 3): 393– 404
|
27 |
LiuY, LuoJ, GirleanuM, ErsenO, Pham-HuuC, MenyC. Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318 : 179– 192
|
28 |
ZhangY R, YangX L, YangX Y, DuanH M, QiH F, SuY, LiangB L, TaoH B, LiuB, ChenD.
|
29 |
LyuS S, ChengQ P, LiuY H, TianY, DingT, JiangZ, ZhangJ, GaoF, DongL, BaoJ.
|
30 |
PeregoC, MilliniR. Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 2013, 42( 9): 3956– 3976
|
31 |
LiX, NisaM U, ChenY, LiZ H. Co-based catalysts supported on silica and carbon materials: effect of support property on cobalt species and Fischer–Tropsch synthesis performance. Industrial & Engineering Chemistry Research, 2019, 58( 8): 3459– 3467
|
32 |
ShiL, ZouY, HeH Y. H-1 NMR study of hydroxy groups in mesoporous molecular sieve SBA-15. Chemistry Letters, 2001, 30( 11): 1164– 1165
|
33 |
SinghS, KumarR, SetiabudiH D, NandaS, VoD V N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Applied Catalysis A, 2018, 559 : 57– 74
|
34 |
LiX, ChenY, NisaM U, LiZ H. Combating poison with poison-irreducible Co2SiO4 as a promoter to modify Co-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis B, 2020, 267 : 118377
|
35 |
LuanZ, MaesE M, van der HeideP A W, ZhaoD, CzernuszewiczR S, KevanL. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chemistry of Materials, 1999, 11( 12): 3680– 3686
|
36 |
ZhaoD, HuoQ, FengJ, ChmelkaB F, StuckyG. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120( 24): 6024– 6036
|
37 |
LiX, ChenY, LiuS Z, ZhaoN, JiangX N, SuM, LiZ H. Enhanced gasoline selectivity through Fischer–Tropsch synthesis on a bifunctional catalyst: effects of active sites proximity and reaction temperature. Chemical Engineering Journal, 2021, 416 : 129180
|
38 |
SongD C, LiJ L. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis A, 2006, 247( 1): 206– 212
|
39 |
HaK S, KwakG, JunK W, HwangJ, LeeJ. Ordered mesoporous carbon nanochannel reactors for high-performance Fischer–Tropsch synthesis. Chemical Communications, 2013, 49( 45): 5141– 5143
|
40 |
BoccutiM R, RaoK M, ZecchinaA, LeofantiG, PetriniG. Spectroscopic characterization of silicalite and titanium-silicalite. Studies in Surface Science and Catalysis, 1989, 48 : 133– 144
|
41 |
ZhangT, ZuoY, LiuM, SongC S, GuoX W. Synthesis of titanium silicalite-1 with high catalytic performance for 1-butene epoxidation by eliminating the extraframework Ti. ACS Omega, 2016, 1( 5): 1034– 1040
|
42 |
NguyenT T, QianE W. Synthesis of mesoporous Ti-inserted SBA-15 and CoMo/Ti-SBA-15 catalyst for hydrodesulfurization and hydrodearomatization. Microporous and Mesoporous Materials, 2018, 265 : 1– 7
|
43 |
ChaoM C, LinH P, MouC Y, ChengB W, ChengC F. Synthesis of nano-sized mesoporous silicas with metal incorporation. Catalysis Today, 2004, 97( 1): 81– 87
|
44 |
KlaigaewK, SamartC, ChaiyaC, YoneyamaY, TsubakiN, ReubroycharoenP. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chemical Engineering Journal, 2015, 278 : 166– 173
|
45 |
WangC B, TangC W, TsaiH C, ChienS H. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catalysis Letters, 2006, 107( 3-4): 223– 230
|
46 |
BianL, WangW, XiaR, LiZ. Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation. RSC Advances, 2016, 6( 1): 677– 686
|
47 |
ZowtiakJ M, BartholomewC H. The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon. Journal of Catalysis, 1983, 83( 1): 107– 120
|
48 |
TsakoumisN E, JohnsenR E, van BeekW, RonningM, RytterE, HolmenA. Capturing metal-support interactions in situ during the reduction of a Re promoted Co/gamma-Al2O3 catalyst. Chemical Communications, 2016, 52( 15): 3239– 3242
|
49 |
WangJ, WangJ, HuangX, ChenC, MaZ, JiaL, HouB, LiD. Co-Al spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer–Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43( 29): 13122– 13132
|
50 |
ChengQ, TianY, LyuS, ZhaoN, MaK, DingT, JiangZ, WangL, ZhangJ, ZhengL, GaoF, DongL, TsubakiN, LiX. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9( 1): 3250
|
51 |
ChengQ, ZhaoN, LyuS, TianY, GaoF, DongL, JiangZ, ZhangJ, TsubakiN, LiX. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer–Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248 : 73– 83
|
52 |
OjedaM, NabarR, NilekarA U, IshikawaA, MavrikakisM, IglesiaE. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 272( 2): 287– 297
|
/
〈 | 〉 |