RESEARCH ARTICLE

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

  • Xin Li 1,2,3 ,
  • Meng Su 1,2 ,
  • Yao Chen 1,2 ,
  • Mehar U. Nisa 1,2 ,
  • Ning Zhao 1,2 ,
  • Xiangning Jiang 1,2 ,
  • Zhenhua Li , 1,2
Expand
  • 1. Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
  • 3. Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China

Received date: 13 Aug 2021

Accepted date: 03 Nov 2021

Published date: 02 Aug 2022

Copyright

2022 Higher Education Press

Abstract

Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

Cite this article

Xin Li , Meng Su , Yao Chen , Mehar U. Nisa , Ning Zhao , Xiangning Jiang , Zhenhua Li . The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(8) : 1224 -1236 . DOI: 10.1007/s11705-022-2139-1

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 22078243) and the Program of Introducing Talents of Discipline to Universities (Grant No. BP0618007).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2139-1 and is accessible for authorized users.
1
MaitlisP M, ZanottiV. The role of electrophilic species in the Fischer–Tropsch reaction. Chemical Communications, 2009, 220( 2): 1619– 1634

DOI

2
AbasN, KalairA, KhanN. Review of fossil fuels and future energy technologies. Futures, 2015, 69 : 31– 49

DOI

3
AnY, LinT, YuF, YangY, ZhongL, WuM, SunY. Advances in direct production of value-added chemicals via syngas conversion. Science China. Chemistry, 2017, 60( 7): 887– 903

DOI

4
SilasK, GhaniW A W A K, ChoongT S Y, RashidU. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: a review. Catalysis Reviews, 2019, 61( 1): 134– 161

DOI

5
MartínezA, LópezC, MárquezF, DíazI. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor and promoters. Journal of Catalysis, 2003, 220( 2): 486– 499

DOI

6
DryM E F T. Catalysts. 1st ed. Besloten Vennootschap: Elsevier, 2004: 533– 600

7
BehroozsarandA, ZamaniyanA. Simulation and optimization of an integrated GTL process. Journal of Cleaner Production, 2017, 142 : 2315– 2327

DOI

8
GualA, GodardC, CastillónS, Curulla-FerréD, ClaverC. Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183( 1): 154– 171

DOI

9
Vande Loosdrecht J, CiobîcăI M, GibsonP, GovenderN S, MoodleyD J, SaibA M, WeststrateC J, NiemantsverdrietJ W. Providing fundamental and applied insights into Fischer–Tropsch catalysis. ACS Catalysis, 2016, 6( 6): 3840– 3855

DOI

10
JahangiriH, BennettJ, MahjoubiP, WilsonK, GuS. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 2014, 4( 8): 2210– 2229

DOI

11
OkabeK, MurataK, NakanishiM, OgiT, NurunnabiM, LiuY. Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 2008, 128( 1-2): 171– 176

DOI

12
ZhangQ, KangJ, WangY. Development of novel catalysts for Fischer–Tropsch synthesis: turning the product selectivity. ChemCatChem, 2010, 2( 9): 1030– 1058

DOI

13
LiuR J, XuY, QiaoY, LiZ H, MaX B. Factors influencing the Fischer–Tropsch synthesis performance of iron-based catalyst: iron oxide dispersion, distribution and reducibility. Fuel Processing Technology, 2015, 139 : 25– 32

DOI

14
MoazamiN, WyszynskiM L, RahbarK, TsolakisA, MahmoudiH. A comprehensive study of kinetics mechanism of Fischer–Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017, 171 : 32– 60

DOI

15
KhodakovA Y, ChuW, FongarlandP. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 2007, 107( 5): 1692– 1744

DOI

16
GaoY, WangJ, LyuY Q, LamK, CiucciF. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5( 14): 6399– 6404

DOI

17
LiuY, MurataK, OkabeK, HanaokaT, SakanishiK. Synthesis of Zr-grafted SBA-15 as an effective support for cobalt catalyst in Fischer–Tropsch synthesis. Chemistry Letters, 2008, 37( 9): 984– 985

DOI

18
GongJ, BaoX. Fundamental insights into interfacial catalysis. Chemical Society Reviews, 2017, 46( 7): 1770– 1771

DOI

19
PennerS, ArmbrüsterM. Formation of intermetallic compounds by reactive metal-support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem, 2015, 7( 3): 374– 392

DOI

20
AldanaP A U, OcampoF, KoblK, LouisB, Thibault-StarzykF, DaturiM, BazinP, ThomasS, RogerA C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 2013, 215 : 201– 207

DOI

21
StorsæterS, TøtdalB, WalmsleyJ C, TanemB S, HolmenA. Characterization of alumina-, silica- and titania-supported cobalt Fischer–Tropsch catalysts. Journal of Catalysis, 2005, 236( 1): 139– 152

DOI

22
MendesF M T, PerezC A C, NoronhaF B, SouzaC D D, CesarD V, FreundH J, SchmalM. Fischer–Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. Journal of Physical Chemistry B, 2006, 110( 18): 9155– 9163

DOI

23
MejíaC H, vander Hoeven J E S, deJongh P E, DeJong K P. Cobalt-nickel nanoparticles supported on reducible oxides as Fischer–Tropsch catalysts. ACS Catalysis, 2020, 10( 13): 7343– 7354

DOI

24
PrietoG, DeMello M, ConcepciónP, MurcianoR, PergherS B C, MartínezA. Cobalt-catalyzed Fischer–Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catalysis, 2015, 5( 6): 3323– 3335

DOI

25
HernandezM C, van DeelenT W, de JongK P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nature Communications, 2018, 9( 1): 4459

DOI

26
LiuY, DeT B, VigneronF, FloreaI, ErsenO, MenyC, NguyenP, PhamC, LuckF, Pham-HuuC. Titania-decorated silicon carbide-containing cobalt catalyst for Fischer–Tropsch synthesis. ACS Catalysis, 2013, 3( 3): 393– 404

DOI

27
LiuY, LuoJ, GirleanuM, ErsenO, Pham-HuuC, MenyC. Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318 : 179– 192

DOI

28
ZhangY R, YangX L, YangX Y, DuanH M, QiH F, SuY, LiangB L, TaoH B, LiuB, ChenD. . Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nature Communications, 2020, 11( 1): 3185

DOI

29
LyuS S, ChengQ P, LiuY H, TianY, DingT, JiangZ, ZhangJ, GaoF, DongL, BaoJ. . Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in Fischer–Tropsch synthesis. Applied Catalysis B, 2020, 278 : 119261

DOI

30
PeregoC, MilliniR. Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 2013, 42( 9): 3956– 3976

DOI

31
LiX, NisaM U, ChenY, LiZ H. Co-based catalysts supported on silica and carbon materials: effect of support property on cobalt species and Fischer–Tropsch synthesis performance. Industrial & Engineering Chemistry Research, 2019, 58( 8): 3459– 3467

DOI

32
ShiL, ZouY, HeH Y. H-1 NMR study of hydroxy groups in mesoporous molecular sieve SBA-15. Chemistry Letters, 2001, 30( 11): 1164– 1165

DOI

33
SinghS, KumarR, SetiabudiH D, NandaS, VoD V N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Applied Catalysis A, 2018, 559 : 57– 74

DOI

34
LiX, ChenY, NisaM U, LiZ H. Combating poison with poison-irreducible Co2SiO4 as a promoter to modify Co-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis B, 2020, 267 : 118377

DOI

35
LuanZ, MaesE M, van der HeideP A W, ZhaoD, CzernuszewiczR S, KevanL. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chemistry of Materials, 1999, 11( 12): 3680– 3686

DOI

36
ZhaoD, HuoQ, FengJ, ChmelkaB F, StuckyG. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120( 24): 6024– 6036

DOI

37
LiX, ChenY, LiuS Z, ZhaoN, JiangX N, SuM, LiZ H. Enhanced gasoline selectivity through Fischer–Tropsch synthesis on a bifunctional catalyst: effects of active sites proximity and reaction temperature. Chemical Engineering Journal, 2021, 416 : 129180

DOI

38
SongD C, LiJ L. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis A, 2006, 247( 1): 206– 212

DOI

39
HaK S, KwakG, JunK W, HwangJ, LeeJ. Ordered mesoporous carbon nanochannel reactors for high-performance Fischer–Tropsch synthesis. Chemical Communications, 2013, 49( 45): 5141– 5143

DOI

40
BoccutiM R, RaoK M, ZecchinaA, LeofantiG, PetriniG. Spectroscopic characterization of silicalite and titanium-silicalite. Studies in Surface Science and Catalysis, 1989, 48 : 133– 144

DOI

41
ZhangT, ZuoY, LiuM, SongC S, GuoX W. Synthesis of titanium silicalite-1 with high catalytic performance for 1-butene epoxidation by eliminating the extraframework Ti. ACS Omega, 2016, 1( 5): 1034– 1040

DOI

42
NguyenT T, QianE W. Synthesis of mesoporous Ti-inserted SBA-15 and CoMo/Ti-SBA-15 catalyst for hydrodesulfurization and hydrodearomatization. Microporous and Mesoporous Materials, 2018, 265 : 1– 7

DOI

43
ChaoM C, LinH P, MouC Y, ChengB W, ChengC F. Synthesis of nano-sized mesoporous silicas with metal incorporation. Catalysis Today, 2004, 97( 1): 81– 87

DOI

44
KlaigaewK, SamartC, ChaiyaC, YoneyamaY, TsubakiN, ReubroycharoenP. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chemical Engineering Journal, 2015, 278 : 166– 173

DOI

45
WangC B, TangC W, TsaiH C, ChienS H. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catalysis Letters, 2006, 107( 3-4): 223– 230

DOI

46
BianL, WangW, XiaR, LiZ. Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation. RSC Advances, 2016, 6( 1): 677– 686

DOI

47
ZowtiakJ M, BartholomewC H. The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon. Journal of Catalysis, 1983, 83( 1): 107– 120

DOI

48
TsakoumisN E, JohnsenR E, van BeekW, RonningM, RytterE, HolmenA. Capturing metal-support interactions in situ during the reduction of a Re promoted Co/gamma-Al2O3 catalyst. Chemical Communications, 2016, 52( 15): 3239– 3242

DOI

49
WangJ, WangJ, HuangX, ChenC, MaZ, JiaL, HouB, LiD. Co-Al spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer–Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43( 29): 13122– 13132

DOI

50
ChengQ, TianY, LyuS, ZhaoN, MaK, DingT, JiangZ, WangL, ZhangJ, ZhengL, GaoF, DongL, TsubakiN, LiX. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9( 1): 3250

DOI

51
ChengQ, ZhaoN, LyuS, TianY, GaoF, DongL, JiangZ, ZhangJ, TsubakiN, LiX. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer–Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248 : 73– 83

DOI

52
OjedaM, NabarR, NilekarA U, IshikawaA, MavrikakisM, IglesiaE. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 272( 2): 287– 297

DOI

Outlines

/