Frontiers of Chemical Science and Engineering >
Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes
Received date: 15 Apr 2021
Accepted date: 23 Aug 2021
Published date: 15 May 2022
Copyright
Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.
Pei Sean Goh , Kar Chun Wong , Tuck Whye Wong , Ahmad Fauzi Ismail . Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(5) : 564 -591 . DOI: 10.1007/s11705-021-2109-z
1 |
Bain R, Johnston R, Slaymaker T. Drinking water quality and the SDGs. NPJ Clean Water, 2020, 3(1): 37
|
2 |
Kirschke S, Barrington D, Tingey-holyoak J. Decade of action on SDG 6. One Earth, 2020, 2(3): 199–200
|
3 |
Qi H, Zeng S, Shi L, Dong X. What the reclaimed water use can change: from a perspective of inter-provincial virtual water network. Journal of Environmental Management, 2021, 287: 112350
|
4 |
Hristov J, Barreiro-Hurle J, Salputra G, Blanco M, Witzke P. Reuse of treated water in European agriculture: potential to address water scarcity under climate change. Agricultural Water Management, 2021, 251: 106872
|
5 |
Skuse C, Gallego-Schmid A, Azapagic A, Gorgojo P. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination, 2021, 500: 114844
|
6 |
Qasim M, Badrelzaman M, Darwish N N, Darwish N A, Hilal N. Reverse osmosis desalination: a state-of-the-art review. Desalination, 2019, 459: 59–104
|
7 |
Wenten I G, Khoiruddin . Reverse osmosis applications: prospect and challenges. Desalination, 2016, 391: 112–125
|
8 |
Obotey Ezugbe E, Rathilal S. Membrane technologies in wastewater treatment: a review. Membranes, 2020, 10(5): 89
|
9 |
Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers, 2019, 11(8): 1–22
|
10 |
Zhao S, Liao Z, Fane A, Li J, Tang C, Zheng C, Lin J, Kong L. Engineering antifouling reverse osmosis membranes: a review. Desalination, 2021, 499: 114857
|
11 |
Khanzada N K, Farid M U, Kharraz J A, Choi J, Tang C Y, Nghiem L D, Jang A, An A K. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review. Journal of Membrane Science, 2020, 598: 117672
|
12 |
Park K, Kim J, Yang D R, Hong S. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions. Journal of Membrane Science, 2020, 595: 117607
|
13 |
Seah M Q, Lau W J, Goh P S, Tseng H H, Wahab R A, Ismail A F. Progress of interfacial iolymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers, 2020, 12(12): 2817
|
14 |
Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Advances in Colloid and Interface Science, 2020, 282: 2–17
|
15 |
Zhao D L, Japip S, Zhang Y, Weber M, Maletzko C, Chung T S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Research, 2020, 173: 115557
|
16 |
Li J, Wei M, Wang Y. Substrate matters: the influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1676–1684
|
17 |
Karami P, Khorshidi B, McGregor M, Peichel J T, Soares J B P, Sadrzadeh M. Thermally stable thin film composite polymeric membranes for water treatment: a review. Journal of Cleaner Production, 2020, 250: 119447
|
18 |
Ismail A F, Padaki M, Hilal N, Matsuura T, Lau W J. Thin film composite membrane—recent development and future potential. Desalination, 2015, 356: 140–148
|
19 |
Habib S, Weinman S T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination, 2021, 502: 114939
|
20 |
Otitoju T A, Saari R A, Ahmad A L. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance. Journal of Industrial and Engineering Chemistry, 2018, 67: 52–71
|
21 |
Yu Y, Lee S, Hong S. Effect of solution chemistry on organic fouling of reverse osmosis membranes in seawater desalination. Journal of Membrane Science, 2010, 351(1–2): 205–213
|
22 |
Bagheri M, Mirbagheri S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresource Technology, 2018, 258: 318–334
|
23 |
Jiang S, Li Y, Ladewig B P B P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 2017, 595: 567–583
|
24 |
Al-Juboori R A, Yusaf T. Biofouling in RO system: mechanisms, monitoring and controlling. Desalination, 2012, 302: 1–23
|
25 |
Nunes S P. Can fouling in membranes be ever defeated? Current Opinion in Chemical Engineering, 2020, 28: 90–95
|
26 |
Goh P S, Lau W J, Othman M H D, Ismail A F. Membrane fouling in desalination and its mitigation strategies. Desalination, 2018, 425: 130–155
|
27 |
Kavitha J, Rajalakshmi M, Phani A R, Padaki M. Pretreatment processes for seawater reverse osmosis desalination systems—a review. Journal of Water Process Engineering, 2019, 32: 100926
|
28 |
Yu W, Song D, Chen W, Yang H. Antiscalants in RO membrane scaling control. Water Research, 2020, 183: 115985
|
29 |
Cai Y H, Galili N, Gelman Y, Herzberg M, Gilron J. Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater. Journal of Membrane Science, 2021, 623: 119054
|
30 |
Winters H. Twenty years experience in seawater reverse osmosis and how chemicals in pretreatment affect fouling of membranes. Desalination, 1997, 110(1–2): 93–96
|
31 |
Stoica I M, Vitzilaiou E, Lyng Røder H, Burmølle M, Thaysen D, Knøchel S, van den Berg F. Biofouling on RO-membranes used for water recovery in the dairy industry. Journal of Water Process Engineering, 2018, 24: 1–10
|
32 |
Flemming H C. Biofouling and me: my Stockholm syndrome with biofilms. Water Research, 2020, 173: 115576
|
33 |
Fujioka T, Ngo M T T, Boivin S, Kawahara K, Takada A, Nakamura Y, Yoshikawa H. Controlling biofouling and disinfection by-product formation during reverse osmosis treatment for seawater desalination. Desalination, 2020, 488: 114507
|
34 |
Yu J, Baek Y, Yoon H, Yoon J. New disinfectant to control biofouling of polyamide reverse osmosis membrane. Journal of Membrane Science, 2013, 427: 30–36
|
35 |
Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Rosa L, Boretti A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. npj Clean Water, 2019, 2(1): 2
|
36 |
Wang Y H, Wu Y H, Tong X, Yu T, Peng L, Bai Y, Zhao X H, Huo Z Y, Ikuno N, Hu H Y. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation. Water Research, 2019, 154: 246–257
|
37 |
Lequette K, Ait-Mouheb N, Adam N, Muffat-Jeandet M, Bru-Adan V, Wéry N. Effects of the chlorination and pressure flushing of drippers fed by reclaimed wastewater on biofouling. Science of the Total Environment, 2021, 758: 143598
|
38 |
Yao Y, Zhang X. Chlorine resistant reverse osmosis membrane: a call for reform of desalination treatment processes. Desalination, 2021, 501: 114907
|
39 |
Glater J, Hong S, Elimelech M. The search for a chlorine-resistant reverse osmosis membrane. Desalination, 1994, 95(3): 325–345
|
40 |
Xu J, Wang Z, Yu L, Wang J, Wang S. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 2013, 435: 80–91
|
41 |
Chesters S P, Pena N, Gallego S, Fazel M, Armstrong M W, del Vigo F. Results from 99 seawater RO membrane autopsies. IDA Journal of Desalination and Water Reuse, 2013, 5(1): 40–47
|
42 |
Landaburu-Aguirre J, García-Pacheco R, Molina S, Rodríguez-Sáez L, Rabadán J, García-Calvo E. Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination, 2016, 393: 16–30
|
43 |
Tessaro I C, da Silva J B A, Wada K. Investigation of some aspects related to the degradation of polyamide membranes: aqueous chlorine oxidation catalyzed by aluminum and sodium laurel sulfate oxidation during cleaning. Desalination, 2005, 181(1–3): 275–282
|
44 |
Kim M, Kim M, Park B, Kim S. Changes in characteristics of polyamide reverse osmosis membrane due to chlorine attack. Desalination and Water Treatment, 2015, 54(4–5): 923–928
|
45 |
Hong S P, Kim I C, Tak T, Kwon Y N. Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination, 2013, 309: 18–26
|
46 |
Kwon Y N, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes. I. Changes in chemical/morphological properties. Journal of Membrane Science, 2006, 283(1–2): 21–26
|
47 |
Do V T, Tang C Y, Reinhard M, Leckie J O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environmental Science & Technology, 2012, 46(24): 13184–13192
|
48 |
Lee J H, Chung J Y, Chan E P, Stafford C M. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes. Journal of Membrane Science, 2013, 433: 72–79
|
49 |
Soice N P, Greenberg A R, Krantz W B, Norman A D. Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis. Journal of Membrane Science, 2004, 243(1–2): 345–355
|
50 |
Wei X, Wang Z, Zhang Z, Wang J, Wang S. Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. Journal of Membrane Science, 2010, 351(1–2): 222–233
|
51 |
Gai W, Zhang Y, Zhao Q, Chung T S. Highly permeable thin film composite hollow fiber membranes for brackish water desalination by incorporating amino functionalized carbon quantum dots and hypochlorite treatment. Journal of Membrane Science, 2021, 620: 118952
|
52 |
Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Progress in Polymer Science, 2017, 72: 1–15
|
53 |
Gohil J M, Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: potential for water treatment and desalination. Separation and Purification Technology, 2017, 181: 159–182
|
54 |
Asadollahi M, Bastani D, Musavi S A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review. Desalination, 2017, 420: 330–383
|
55 |
Cran M J, Bigger S W, Gray S R. Degradation of polyamide reverse osmosis membranes in the presence of chloramine. Desalination, 2011, 283: 58–63
|
56 |
Verbeke R, Bergmaier A, Eschbaumer S, Gómez V, Dollinger G, Vankelecom I. Elemental depth profiling of chlorinated polyamide-based thin-film composite membranes with elastic recoil detection. Environmental Science & Technology, 2019, 53(15): 8640–8648
|
57 |
Stolov M, Freger V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environmental Science & Technology, 2019, 53(5): 2618–2625
|
58 |
Verbeke R, Gómez V, Koschine T, Eyley S, Szymczyk A, Dickmann M, Stimpel-Lindner T, Egger W, Thielemans W, Vankelecom I F J. Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization. Journal of Membrane Science, 2018, 551: 123–135
|
59 |
Surawanvijit S, Rahardianto A, Cohen Y. An Integrated approach for characterization of polyamide reverse osmosis membrane degradation due to exposure to free chlorine. Journal of Membrane Science, 2016, 510: 164–173
|
60 |
Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Analytical Sciences, 1998, 14(4): 691–698
|
61 |
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Research, 2021, 195: 116976
|
62 |
Zhao Y, Dai L, Zhang Q, Zhou S, Zhang S. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. Journal of Colloid and Interface Science, 2019, 541: 434–443
|
63 |
Ling R, Shao J, Chen J P, Reinhard M. Iron catalyzed degradation of an aromatic polyamide reverse osmosis membrane by free chlorine. Journal of Membrane Science, 2019, 577: 205–211
|
64 |
Wu J, Wang Z, Wang Y, Yan W, Wang J, Wang S. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. Journal of Membrane Science, 2015, 495: 1–13
|
65 |
Ettori A, Gaudichet-Maurin E, Aimar P, Causserand C. Pilot scale study of chlorination-induced transport property changes of a seawater reverse osmosis membrane. Desalination, 2013, 311: 24–30
|
66 |
Wu D, Martin J, Du J R, Zhang Y, Lawless D, Feng X. Effects of chlorine exposure on nanofiltration performance of polyamide membranes. Journal of Membrane Science, 2015, 487: 256–270
|
67 |
Kawaguchi T, Tamura H. Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides. Journal of Applied Polymer Science, 1984, 29(11): 3359–3367
|
68 |
Avlonitis S, Hanbury W T, Hodgkiess T. Chlorine degradation of aromatic polyamides. Desalination, 1992, 85(3): 321–334
|
69 |
Liu S, Wu C, Hou X, She J, Liu S, Lu X, Zhang H, Gray S. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane. Journal of Membrane Science, 2019, 573: 36–45
|
70 |
Barassi G, Borrmann T. N-chlorination and Orton rearrangement of aromatic polyamides, revisited. Journal of Membrane Science & Technology, 2012, 02(02): 2–4
|
71 |
Powell J, Luh J, Coronell O. Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: Kinetics and mechanisms. Environmental Science & Technology, 2015, 49(20): 12136–12144
|
72 |
Do V T, Tang C Y, Reinhard M, Leckie J O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environmental Science & Technology, 2012, 46(2): 852–859
|
73 |
Xu J, Wang Z, Wei X, Yang S, Wang J, Wang S. The chlorination process of crosslinked aromatic polyamide reverse osmosis membrane: new insights from the study of self-made membrane. Desalination, 2013, 313: 145–155
|
74 |
Valentino L, Renkens T, Maugin T, Croué J P, Mariñas B J. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Environmental Science & Technology, 2015, 49(4): 2301–2309
|
75 |
Singh R. Polyamide polymer solution behaviour under chlorination conditions. Journal of Membrane Science, 1994, 88(2–3): 285–287
|
76 |
García-Pacheco R, Landaburu-Aguirre J, Lejarazu-Larrañaga A, Rodríguez-Sáez L, Molina S, Ransome T, García-Calvo E. Free chlorine exposure dose (ppm∙h) and its impact on RO membranes ageing and recycling potential. Desalination, 2019, 457: 133–143
|
77 |
Lawler W, Bradford-Hartke Z, Cran M J, Duke M, Leslie G, Ladewig B P, Le-Clech P. Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination, 2012, 299: 103–112
|
78 |
Donose B C, Sukumar S, Pidou M, Poussade Y, Keller J, Gernjak W. Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination, 2013, 309: 97–105
|
79 |
Tu K L, Chivas A R, Nghiem L D. Effects of chemical preservation on flux and solute rejection by reverse osmosis membranes. Journal of Membrane Science, 2014, 472: 202–209
|
80 |
Badruzzaman M, Voutchkov N, Weinrich L, Jacangelo J G. Selection of pretreatment technologies for seawater reverse osmosis plants: a review. Desalination, 2019, 449: 78–91
|
81 |
Freitas B de O, Leite L de S, Daniel L A. Chlorine and peracetic acid in decentralized wastewater treatment: disinfection, oxidation and odor control. Process Safety and Environmental Protection, 2021, 146: 620–628
|
82 |
Wu Y H, Chen Z, Li X, Wang Y H, Liu B, Chen G Q, Luo L W, Wang H B, Tong X, Bai Y,
|
83 |
Liu J, Zhang Z, Chen Q, Zhang X. Synergistic effect of ferrate (VI)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment. Journal of Membrane Science, 2018, 567: 216–227
|
84 |
Xu R, Jiang P, Wei C, Lü Z, Yu S, Liu M, Gao C. Depositing sericin on partially degraded polyamide reverse osmosis membrane for restored salt rejection and simultaneously enhanced resistance to both fouling and chlorine. Journal of Membrane Science, 2018, 545: 196–203
|
85 |
Mitrouli S T, Karabelas A J, Isaias N P, Al Rammah A S. Application of hydrophilic macromolecules on thin film composite polyamide membranes for performance restoration. Desalination, 2011, 278(1–3): 105–116
|
86 |
Da Silva M K, Ambrosi A, Dos Ramos G M, Tessaro I C. Rejuvenating polyamide reverse osmosis membranes by tannic acid treatment. Separation and Purification Technology, 2012, 100: 1–8
|
87 |
Liu L F, Wu H, Li R H, Yu C, Zhao X T, Gao C J. Modification of poly(amide-urethane-imide) (PAUI) thin film composite reverse osmosis membrane with nano-silver particles. RSC Advances, 2018, 8(66): 37817–37827
|
88 |
Sun H, Chen Y, Liu J, Chai D, Li P, Wang M, Hou Y, Jason Niu Q. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin. Separation and Purification Technology, 2021, 262: 118300
|
89 |
La Y H, Sooriyakumaran R, Miller D C, Fujiwara M, Terui Y, Yamanaka K, McCloskey B D, Freeman B D, Allen R D. Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance. Journal of Materials Chemistry, 2010, 20(22): 4615–4620
|
90 |
Kim Y K, Lee S Y, Kim D H, Lee B S, Nam S Y, Rhim J W. Preparation and characterization of thermally crosslinked chlorine resistant thin film composite polyamide membranes for reverse osmosis. Desalination, 2010, 250(2): 865–867
|
91 |
Wu S, Zheng C, Zheng G. Truly chlorine-resistant polyamide reverse osmosis composite membrane. Journal of Applied Polymer Science, 1996, 61(7): 1147–1148
|
92 |
Zhang Y, Zhao C, Yan H, Pan G, Guo M, Na H, Liu Y. Highly chlorine-resistant multilayer reverse osmosis membranes based on sulfonated poly(arylene ether sulfone) and poly(vinyl alcohol). Desalination, 2014, 336(1): 58–63
|
93 |
Zhang N, Song X, Jiang H, Tang C Y. Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269: 118719
|
94 |
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separation and Purification Technology, 2021, 266: 118567
|
95 |
Xu G R, Wang J N, Li C J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination, 2013, 328: 83–100
|
96 |
Hailemariam R H, Woo Y C, Damtie M M, Kim B C, Park K D, Choi J S. Reverse osmosis membrane fabrication and modification technologies and future trends: a review. Advances in Colloid and Interface Science, 2020, 276: 102100
|
97 |
Li M P, Zhang X, Zhang H, Liu W L, Huang Z H, Xie F, Ma X H, Xu Z L. Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247: 116990
|
98 |
Sun J, Zhu L P, Wang Z H, Hu F, Zhang P B, Zhu B K. Improved chlorine resistance of polyamide thin-film composite membranes with a terpolymer coating. Separation and Purification Technology, 2016, 157: 112–119
|
99 |
Cheng Q, Zheng Y, Yu S, Zhu H, Peng X, Liu J, Liu J, Liu M, Gao C. Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of N-isopropylacrylamide followed by acrylic acid. Journal of Membrane Science, 2013, 447: 236–245
|
100 |
Liu M, Chen Q, Wang L, Yu S, Gao C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination, 2015, 367: 11–20
|
101 |
Goh P S, Zulhairun A K, Ismail A F, Hilal N. Contemporary antibiofouling modifications of reverse osmosis desalination membrane: a review. Desalination, 2019, 468: 114072
|
102 |
Liu Q, Xu G R. Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination, 2016, 394: 162–175
|
103 |
Chae H R, Lee J, Lee C H, Kim I C, Park P K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 2015, 483: 128–135
|
104 |
Aziz A A, Wong K C, Goh P S, Ismail A F, Azelee I W. Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. Journal of Water Process Engineering, 2020, 33: 101005
|
105 |
Kang G D, Gao C J, Chen W D, Jie X M, Cao Y M, Yuan Q. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science, 2007, 300(1–2): 165–171
|
106 |
Soice N P, Maladono A C, Takigawa D Y, Norman A D, Krantz W B, Greenberg A R. Oxidative degradation of polyamide reverse osmosis membranes: studies of molecular model compounds and selected membranes. Journal of Applied Polymer Science, 2003, 90(5): 1173–1184
|
107 |
Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167
|
108 |
Xie Y, Gao S, Eslamian M. Fundamental study on the effect of spray parameters on characteristics of P3HT: PCBM active layers made by spray coating. Coatings, 2015, 5(3): 488–510
|
109 |
Saqib J, Aljundi I H. Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: state-of-the-art review. Journal of Water Process Engineering, 2016, 11: 68–87
|
110 |
Goh P S, Ismail A F. Chemically functionalized polyamide thin film composite membranes: the art of chemistry. Desalination, 2020, 495: 114655
|
111 |
Lee X J, Show P L, Katsuda T, Chen W H, Chang J S. Surface grafting techniques on the improvement of membrane bioreactor: state-of-the-art advances. Bioresource Technology, 2018, 269: 489–502
|
112 |
Yan Z, Zhang Y, Yang H, Fan G, Ding A, Liang H, Li G, Ren N, Van der Bruggen B. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: a review. Chemical Engineering Research & Design, 2020, 157: 195–214
|
113 |
Faria A F, Liu C, Xie M, Perreault F, Nghiem L D, Ma J, Elimelech M. Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control. Journal of Membrane Science, 2017, 525: 146–156
|
114 |
Perreault F, Tousley M E, Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environmental Science & Technology Letters, 2014, 1(1): 71–76
|
115 |
Lego B, François M, Skene W G, Giasson S. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Langmuir, 2009, 25(9): 5313–5321
|
116 |
Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446: 79–91
|
117 |
El-Arnaouty M B, Abdel-Ghaffar A M, Eid M, Aboulfotouh M E, Taher N H, Soliman E S. Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 2018, 11(3): 204–216
|
118 |
Teow Y H, Mohammad A W. New generation nanomaterials for water desalination: a review. Desalination, 2019, 451: 2–17
|
119 |
Wang Y, Wang Z, Wang J. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property. Journal of Membrane Science, 2018, 554: 221–231
|
120 |
Zhang T, Zhang K, Li J, Yue X. Simultaneously enhancing hydrophilicity, chlorine resistance and anti-biofouling of APA-TFC membrane surface by densely grafting quaternary ammonium cations and salicylaldimines. Journal of Membrane Science, 2017, 528: 296–302
|
121 |
Wang Y, Zhang H, Song C, Gao C, Zhu G. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. Journal of Membrane Science, 2020, 614: 118496
|
122 |
Liu M, Yu C, Dong Z, Jiang P, Lü Z, Yu S, Gao C. Improved separation performance and durability of polyamide reverse osmosis membrane in tertiary treatment of textile effluent through grafting monomethoxy-poly(ethylene glycol) brushes. Separation and Purification Technology, 2019, 209: 443–451
|
123 |
Hu Y, Lu K, Yan F, Shi Y, Yu P, Yu S, Li S, Gao C. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). Journal of Membrane Science, 2016, 501: 209–219
|
124 |
Gholami S, Rezvani A, Vatanpour V, Cortina J L. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating. Desalination, 2018, 443: 245–255
|
125 |
Yan W, Liu L, Dong C, Xie S, Zhao X, Gao C. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance. Desalination, 2021, 498: 114639
|
126 |
Yan W, Wang Z, Zhao S, Wang J, Zhang P, Cao X. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. Journal of Membrane Science, 2019, 572: 61–72
|
127 |
Cao S, Zhang G, Xiong C, Long S, Wang X, Yang J. Preparation and characterization of thin-film-composite reverse-osmosis polyamide membrane with enhanced chlorine resistance by introducing thioether units into polyamide layer. Journal of Membrane Science, 2018, 564: 473–482
|
128 |
Huang H, Lin S, Zhang L, Hou L. Chlorine-resistant polyamide reverse osmosis membrane with monitorable and regenerative sacrificial layers. ACS Applied Materials & Interfaces, 2017, 9(11): 10214–10223
|
129 |
Zhang X, Huang H, Li Q, Yu H, Tian X, Zhao M, Zhang H. Facile dual-functionalization of polyamide reverse osmosis membrane by a natural polypeptide to improve the antifouling and chlorine-resistant properties. Journal of Membrane Science, 2020, 604: 118044
|
130 |
Chung T S, Chng M L, Pramoda K P, Xiao Y. PAMAM dendrimer-induced cross-linking modification of polyimide membranes. Langmuir, 2004, 20(7): 2966–2969
|
131 |
Nagandran S, Goh P S, Ismail A F, Wong T W, Wan-Dagang W R Z. The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry, 2020, 12(2): 239
|
132 |
Asempour F, Akbari S, Kanani-Jazi M H, Atashgar A, Matsuura T, Kruczek B. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. Journal of Membrane Science, 2021, 623: 119039
|
133 |
Vatanpour V, Sanadgol A. Surface modification of reverse osmosis membranes by grafting of polyamidoamine dendrimer containing graphene oxide nanosheets for desalination improvement. Desalination, 2020, 491: 114442
|
134 |
Lin S, Huang H, Zeng Y, Zhang L, Hou L. Facile surface modification by aldehydes to enhance chlorine resistance of polyamide thin film composite membranes. Journal of Membrane Science, 2016, 518: 40–49
|
135 |
Liu S, Low Z X, Hegab H M, Xie Z, Ou R, Yang G, Simon G P, Zhang X, Zhang L, Wang H. Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. Journal of Membrane Science, 2019, 592: 117363
|
136 |
Smith A T, LaChance A M, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019, 1(1): 31–47
|
137 |
Hamdy G, Taher A. Enhanced chlorine-resistant and low biofouling reverse osmosis polyimide-graphene oxide thin film nanocomposite membranes for water desalination. Polymer Engineering and Science, 2020, 60(10): 2567–2580
|
138 |
Kim H J, Lim M Y, Jung K H, Kim D G, Lee J C. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6798–6809
|
139 |
An S, Wu J, Nie Y, Li W, Fortner J D. Free chlorine induced phototransformation of graphene oxide in water: reaction kinetics and product characterization. Chemical Engineering Journal, 2020, 381: 122609
|
140 |
Hegab H M, Zou L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. Journal of Membrane Science, 2015, 484: 95–106
|
141 |
Shao F, Dong L, Dong H, Zhang Q, Zhao M, Yu L, Pang B, Chen Y. Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance. Journal of Membrane Science, 2017, 525: 9–17
|
142 |
Shao F, Su X, Shen X, Ren S, Wang H, Yi Z, Xu C, Yu L, Dong L. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide. Separation and Purification Technology, 2021, 254: 1–9
|
143 |
Abbaszadeh M, Krizak D, Kundu S. Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance. Desalination, 2019, 470: 114116
|
144 |
Yi Z, Shao F, Yu L, Song N, Dong H, Pang B, Yu J, Feng J, Dong L. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection. Desalination, 2020, 479: 114341
|
145 |
Ge M, Wang X, Wu S, Long Y, Yang Y, Zhang J. Highly antifouling and chlorine resistance polyamide reverse osmosis membranes with g-C3N4 nanosheets as nanofiller. Separation and Purification Technology, 2021, 258: 117980
|
146 |
Zhu J, Xiao P, Li H, Carabineiro S A C. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Applied Materials & Interfaces, 2014, 6(19): 16449–16465
|
147 |
Niu P, Zhang L, Liu G, Cheng H M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012, 22(22): 4763–4770
|
148 |
Xu C, Shao F, Yi Z, Dong H, Zhang Q, Yu J, Feng J, Wu X, Zhang Q, Yu L, Dong L. Highly chlorine resistance polyamide reverse osmosis membranes with oxidized graphitic carbon nitride by ontology doping method. Separation and Purification Technology, 2019, 223: 178–185
|
149 |
Zhao D L, Yeung W S, Zhao Q, Chung T S. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. Journal of Membrane Science, 2020, 604: 118039 doi:10.1016/j.memsci.2020.118039
|
150 |
Zhang X, Huang H, Li X, Wang J, Wei Y, Zhang H. Bioinspired chlorine-resistant tailoring for polyamide reverse osmosis membrane based on tandem oxidation of natural α-lipoic acid on the surface. Journal of Membrane Science, 2021, 618: 118521
|
151 |
Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation: a fast surface hydrophilic modification method for polymeric materials. Polymer, 2003, 44(23): 7157–7164
|
152 |
Bing S, Wang J, Xu H, Zhao Y, Zhou Y, Zhang L, Gao C, Hou L. Polyamide thin-film composite membrane modified with persulfate for improvement of perm-selectivity and chlorine-resistance. Journal of Membrane Science, 2018, 555: 318–326
|
153 |
Ni L, Meng J, Li X, Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215
|
154 |
Qu K, Huang K, Xu Z. Recent progress in the design and fabrication of MXene-based membranes. Frontiers of Chemical Science and Engineering, 2021, 15(4): 820–836
|
155 |
Al-Hamadani Y A J, Jun B M, Yoon M, Taheri-Qazvini N, Snyder S A, Jang M, Heo J, Yoon Y. Applications of MXene-based membranes in water purification: a review. Chemosphere, 2020, 254: 126821
|
156 |
Wang X, Li Q, Zhang J, Huang H, Wu S, Yang Y. Novel thin-film reverse osmosis membrane with MXene Ti3C2Txembedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. Journal of Membrane Science, 2020, 603: 118036
|
/
〈 | 〉 |