RESEARCH ARTICLE

Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling

  • Xuesong Lu ,
  • Xiaojiao Luo ,
  • Warren A. Thompson ,
  • Jeannie Z.Y. Tan ,
  • M. Mercedes Maroto-Valer
Expand
  • Research Centre for Carbon Solutions, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Received date: 29 Mar 2021

Accepted date: 19 Jul 2021

Published date: 15 Jul 2022

Copyright

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn

Abstract

The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multiphysics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10−4 mol·m–3 at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated.

Cite this article

Xuesong Lu , Xiaojiao Luo , Warren A. Thompson , Jeannie Z.Y. Tan , M. Mercedes Maroto-Valer . Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(7) : 1149 -1163 . DOI: 10.1007/s11705-021-2096-0

Acknowledgments

The authors thank the financial support provided by the Engineering and Physical Sciences Research Council (Grant No. EP/K021796/1), the Research Centre for Carbon Solutions and the James Watt Scholarship Programme at Heriot-Watt University. We are also grateful for the support provided by the Buchan Chair in Sustainable Energy Engineering.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
1
Lu X, Xie P, Ingham D B, Ma L, Pourkashanian M. Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chemical Engineering Science, 2019, 199: 302–318

DOI

2
Izumi Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 2013, 257(1): 171–186

DOI

3
Tan L, Peter K, Ren J, Du B, Hao X, Zhao Y, Song Y. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Frontiers of Chemical Science and Engineering, 2021, 15(1): 99–108

DOI

4
Song G, Wu X, Xin F, Yin X. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Frontiers of Chemical Science and Engineering, 2017, 11(2): 197–204

DOI

5
Hafez A M, Zedan A F, AlQaradawi S Y, Salem N M, Allam N K. Computational study on oxynitride perovskites for CO2 photoreduction. Energy Conversion and Management, 2016, 122: 207–214

DOI

6
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986

DOI

7
Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann D W, Pan J H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catalysis Today, 2019, 335: 78–90

DOI

8
Vorontsov A V, Valdes H, Smirniotis P G, Paz Y. Recent advancements in the understanding of the surface chemistry in TiO2 photocatalysis. Surfaces, 2020, 3(1): 72–92

DOI

9
Thompson W A, Fernandez E S, Maroto-Valer M M. Review and analysis of CO2 photoreduction kinetics. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4677–4692

DOI

10
Tahir M, Amin N S. Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Applied Catalysis A, General, 2013, 467: 483–496

DOI

11
Thompson W A, Fernandez E S, Maroto-Valer M M. Probability Langmuir-Hinshelwood based CO2 photoreduction kinetic models. Chemical Engineering Journal, 2020, 384: 123356

DOI

12
Marczewski A W. Analysis of kinetic Langmuir model. Part I: integrated Langmuir equation (IKL): a new complete analytical solution of the Langmuir rate equation. Langmuir, 2010, 26(19): 15229–15238

DOI

13
Bloh J Z. A holistic approach to model the kinetics of photocatalytic reactions. Frontiers in Chemistry, 2019, 7: 128

DOI

14
Li H, Yi F, Li X, Gao X. Numerical modelling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater. Frontiers of Chemical Science and Engineering, 2021, 15(3): 602–614

DOI

15
Chu F, Chen S, Li H, Yang L, Ola O, Maroto-Valer M M, Du X, Yang Y. Modeling photocatalytic conversion of carbon dioxide in bubbling twin reactor. Energy Conversion and Management, 2017, 149: 514–525

DOI

16
Chen H, Chu F, Yang L, Ola O, Du X, Yang Y. Enhanced photocatalytic reduction of carbon dioxide in optical fibre monolith reactor with transparent glass balls. Applied Energy, 2018, 230: 1403–1413

DOI

17
Verbruggen S W, Lenaerts S, Denys S. Analytic versus CFD approach for kinetic modelling of gas phase photocatalysis. Chemical Engineering Journal, 2015, 262: 1–8

DOI

18
Olivo A, Thompson W A, Bay E R B, Ghedini E, Menegazzo F, Maroto-Valer M, Signoretto M. Investigation of process parameters assessment via design of experiments for CO2 photoreduction in two photoreactors. Journal of CO2 Utilization, 2020, 36: 25–32

19
Wang X, Tan X, Yu T. Kinetic study of ozone photocatalytic decomposition using a thin film of TiO2 coated on a glass plate and the CFD modelling approach. Industrial & Engineering Chemistry Research, 2014, 53(19): 7902–7909

DOI

20
Kočí K, Obalová L, Šolcová L. Kinetic study of photocatalytic reduction of CO2 over TiO2. Chemical & Process Engineering, 2010, 31: 395–407

21
Ji Y, Luo Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2(101) surface. ACS Catalysis, 2016, 6(3): 2018–2025

DOI

22
Campbell C T, Sellers J R V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chemical Reviews, 2013, 113(6): 4106–4135

DOI

23
Meng X, Yun N, Zhang Z. Recent advances in computational photocatalysis: a review. Canadian Journal of Chemical Engineering, 2019, 97(7): 1982–1998

DOI

24
Dilla M, Schlögl R, Strunk J. Photocatalytic CO2 reduction under continuous flow high-purity conditions: quantitative evaluation of CH4 formation in the steady-state. ChemCatChem, 2017, 9(4): 696–704

DOI

25
Tseng I, Chang W, Wu J C S. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002, 37(1): 34–48

DOI

26
Giammar D E, Maus C J, Xie L. Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environmental Engineering Science, 2007, 24(1): 85–95

DOI

27
Mao W, Wilde M, Ogura S, Chen J, Fukutani K, Matsuzaki H, Terai T. Hydrogen-accelerated phase transition and diffusion in TiO2 thin films. Journal of Physical Chemistry C, 2018, 122(40): 23026–23033

DOI

28
Tan L L, Ong W J, Chai S P, Mohamed A R. Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: process and kinetic studies. Chemical Engineering Journal, 2017, 308: 248–255

DOI

29
Lopes F V S, Grande C A, Ribeiro A M, Loureiro J M, Evaggelos O, Nikolakis V, Rodrigues A E. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Separation Science and Technology, 2009, 44(5): 1045–1073

DOI

30
Bazan R E, Bastos-Neto M, Moeller A, Dreisbach F, Staudt R. Adsorption equilibria of O2, Ar, Kr, and Xe on activated carbon and zeolites: single component and mixture data. Adsorption, 2011, 17(2): 371–383

DOI

31
Delavari S, Amin N A S. Photocatalytic conversion of CO2 and CH4 over immobilized titanic nanoparticles coated on mesh optimization and kinetic study. Applied Energy, 2016, 162: 1171–1185

DOI

32
Lo C C, Hung C H, Yuan C S, Hung Y L. Parameter effects and reaction pathways of photoreduction of CO2 over TiO2/SO42– photocatalyst. Chinese Journal of Catalysis, 2007, 28(6): 528–534

DOI

33
Khalilzadeh A, Shariati A. Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: synthesis, process and kinetic study. Solar Energy, 2018, 164: 251–261

DOI

34
Sebastia-Saez D, Gu S, Ranganathan P, Papadikis K. Meso-scale CFD study of the pressure drop, liquid hold-up, interfacial area and mass transfer in structured packing materials. International Journal of Greenhouse Gas Control, 2015, 42: 388–399

DOI

35
Anpo M. Photocatalytic reduction of CO2 with H2O on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. Journal of CO2 Utilization, 2013, 1: 8–17

36
Yin W, Wen B, Ge Q, Li X, Teobaldi G, Liu L. Activity and selectivity of CO2 photoreduction on catalytic materials. Dalton Transactions (Cambridge, England), 2020, 49(37): 12918–12928

DOI

37
Ola O, Maroto-Valer M M. Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Applied Catalysis A, General, 2015, 502: 114–121

DOI

38
Thompson T L, Yates J T Jr. TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Topics in Catalysis, 2005, 35(3-4): 197–210

DOI

39
Li D, Huang Y, Li S, Wang C, Li Y, Zhang X, Liu Y. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2. Chinese Journal of Catalysis, 2020, 41(1): 154–160

DOI

40
Tan L, Xu S, Wang Z, Xu Y, Wang X, Hao X, Bai S, Ning C, Wang Y, Zhang W, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayered double hydroxide under irradiation above 600 nm. Angewandte Chemie, 2019, 131(34): 11986–11993

DOI

41
Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S. Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A Chemistry, 1999, 126(1-3): 117–123

DOI

42
Zhou W, Guo J, Shen S, Pan J, Tang J, Chen L, Au C, Yin S. Progress in photoelectrocatalytic reduction of carbon dioxide. Acta Physica Sinica, 2020, 36(3): 1906048 (in Chinese)

DOI

43
Xie F, Chen R, Zhu X, Liao Q, Ye D, Zhang B, Yu Y, Li J.CO2 utilization: direct power generation by a coupled system that integrates photocatalytic reduction of CO2 with photocatalytic fuel cell. Journal of CO2 Utilization, 2019, 32: 31–36

44
Chen M, Wu J, Lu C, Luo X, Huang Y, Jin B, Guo H, Zhang X, Argyle M, Liang Z. Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature. Green Energy & Environment, 2021, in press

DOI

Outlines

/