RESEARCH ARTICLE

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery

  • Han Jia , 1,2 ,
  • Jiajun Dai 1,2 ,
  • Tingyi Wang 3 ,
  • Yingbiao Xu 3 ,
  • Lingyu Zhang 3 ,
  • Jianan Wang 1,2 ,
  • Lin Song 1,2 ,
  • Kaihe Lv 1,2 ,
  • Dexin Liu 1,2 ,
  • Pan Huang , 4
Expand
  • 1. Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • 2. Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
  • 3. Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
  • 4. Department of Chemical and Materials Engineering, University of Alberta Edmonton, AB T6G 1H9, Canada

Received date: 04 May 2021

Accepted date: 16 Jul 2021

Published date: 15 Jul 2022

Copyright

2021 Higher Education Press

Abstract

Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

Cite this article

Han Jia , Jiajun Dai , Tingyi Wang , Yingbiao Xu , Lingyu Zhang , Jianan Wang , Lin Song , Kaihe Lv , Dexin Liu , Pan Huang . The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(7) : 1101 -1113 . DOI: 10.1007/s11705-021-2095-1

Acknowledgments

The authors are grateful for funding from the National Natural Science Foundation of China (Grant No. 51974344), the Natural Science Foundation of Shandong Provincial (Grant No. ZR2019MEE077), and the Fundamental Research Funds for the Central Universities (Grant No. 19CX02064A).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-021-2095-1 and is accessible for authorized users.
1
McClements D J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 2020, 38: 107287

DOI

2
Manzano M, Vallet-Regi M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634

DOI

3
McNamara K, Tofail S A M. Nanoparticles in biomedical applications. Advances in Physics: X, 2017, 2(1): 54–88

DOI

4
Rizvi S A, Saleh A M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 2018, 26(1): 64–70

DOI

5
Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045–1057

DOI

6
Modena M M, Ruhle B, Burg T P, Wuttke S. Nanoparticle characterization: what to measure? Advanced Materials, 2019, 31(32): 1901556

DOI

7
Wu S H, Mou C Y, Lin H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875

DOI

8
Zhang C N, Dong Y, Gao J, Wang X L, Jiang Y J. Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1296–1311

DOI

9
Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135

DOI

10
Wu Q, Zhang J C, Wang S P, Chen B J, Feng Y J, Pei Y B, Yan Y, Tang L C, Qiu H Y, Wu L. Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating. Frontiers of Chemical Science and Engineering, 2020, 15(4): 969–983

DOI

11
Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir, 2007, 23(7): 3626–3636

DOI

12
Binks B P, Rodrigues J A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir, 2007, 23(14): 7436–7439

DOI

13
Zhao M W, Wang R Y, Dai C L, Wu X P, Wu Y R, Dai Y J, Wu Y N. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length. Chemical Engineering Science, 2019, 206: 203–211

DOI

14
Lian P, Jia H, Wei X, Han Y G, Wang Q X, Dai J J, Wang D F, Wang S Y, Tian Z H, Yan H. Effects of zwitterionic surfactant adsorption on the component distribution in the crude oil droplet: a molecular simulation study. Fuel, 2021, 283: 119252

DOI

15
Liu J P, Dai Z W, Li C J, Lv K H, Huang X B, Sun J S, Wei B. Inhibition of the hydration expansion of sichuan gas shale by adsorption of compounded surfactants. Energy & Fuels, 2019, 33(7): 6020–6026

DOI

16
Ngai T, Behrens S H, Auweter H. Novel emulsions stabilized by pH and temperature sensitive microgels. Chemical Communications, 2005, 3: 331–333

DOI

17
Alcazar-Vara L A, Zamudio-Rivera L S, Buenrostro-Gonzalez E. Multifunctional evaluation of a new supramolecular complex in enhanced oil recovery, removal/control of organic damage, and heavy crude oil viscosity reduction. Industrial & Engineering Chemistry Research, 2015, 54(32): 7766–7776

DOI

18
Williams G T, Haynes C J E, Fares M, Caltagirone C, Hiscock J R, Gale P A. Advances in applied supramolecular technologies. Chemical Society Reviews, 2021, 50(4): 2737–2763

DOI

19
Huang T, Meng F, Qi L M. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir, 2010, 26(10): 7582–7589

DOI

20
Liu R, Lu Y Y, Pu W F, Lian K L, Sun L, Du D J, Song Y Y, Sheng J J. Low-energy emulsification of oil-in-water emulsions with self-regulating mobility via a nanoparticle surfactant. Industrial & Engineering Chemistry Research, 2020, 59(41): 18396–18411

DOI

21
Almahfood M, Bai B. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. Journal of Petroleum Science Engineering, 2018, 171: 196–210

DOI

22
Olayiwola S O, Dejam M. Interfacial energy for solutions of nanoparticles, surfactants, and electrolytes. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(4): e16891

DOI

23
Bollineni P K, Dordzie G, Olayiwola S O, Dejam M. An experimental investigation of the viscosity behavior of solutions of nanoparticles, surfactants, and electrolytes. Physics of Fluids, 2021, 33(2): 026601

DOI

24
Zhu G L, Huang Z H, Xu Z Y, Yan L T. Tailoring interfacial nanoparticle organization through entropy. Accounts of Chemical Research, 2018, 51(4): 900–909

DOI

25
Liu Z Y, Guo R H, Xu G X, Huang Z H, Yan L T. Entropy-mediated mechanical response of the interfacial nanoparticle patterning. Nano Letters, 2014, 14(12): 6910–6916

DOI

26
Xu G X, Huang Z H, Chen P Y, Cui T Q, Zhang X H, Miao B, Yan L T. Optimal reactivity and improved self-healing capability of structurally dynamic polymers grafted on Janus nanoparticles governed by chain stiffness and spatial organization. Small, 2017, 13(13): 1603155

DOI

27
Jia H, Dai J J, Huang P, Han Y G, Wang Q X, He J, Song J Y, Wei X, Yan H, Liu D X. Application of novel amphiphilic Janus-SiO2 nanoparticles for an efficient demulsification of crude oil/water emulsions. Energy & Fuels, 2020, 34(11): 13977–13984

DOI

28
Walther A, Mueller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261

DOI

29
Liu Y J, Hu J K, Yu X T, Xu X Y, Gao Y, Li H M, Liang F X. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of Colloid and Interface Science, 2017, 490: 357–364

DOI

30
Yoon K Y, Son H A, Choi S K, Kim J W, Sung W M, Kim H T. Core flooding of complex nanoscale colloidal dispersions for enhanced oil recovery by in situ formation of stable oil-in-water Pickering emulsions. Energy & Fuels, 2016, 30(4): 2628–2635

DOI

31
Yin T H, Yang Z H, Zhang F F, Lin M Q, Zhang J, Dong Z X. Assembly and mechanical response of amphiphilic Janus nanosheets at oil-water interfaces. Journal of Colloid and Interface Science, 2021, 583: 214–221

DOI

32
Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499

DOI

33
Jia H, Leng X, Lian P, Han Y G, Wang Q X, Wang S Y, Sun T N, Liang Y P, Huang P, Lv K H. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. Soft Matter, 2019, 15(27): 5529–5536

DOI

34
Olayiwola S O, Dejam M. Comprehensive experimental study on the effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs. Journal of Molecular Liquids, 2021, 325: 115178

DOI

35
Olayiwola S O, Dejam M. Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage. Journal of Molecular Liquids, 2020, 317: 114228

DOI

36
Jia H, Huang P, Han Y G, Wang Q X, Wei X, Huang W J, Dai J J, Song J Y, Yan H, Liu D X. Synergistic effects of Janus graphene oxide and surfactants on the heavy oil/water interfacial tension and their application to enhance heavy oil recovery. Journal of Molecular Liquids, 2020, 314: 113791

DOI

37
Bucki R, Niemirowicz-Laskowska K, Deptula P, Wilczewska A Z, Misiak P, Durnas B, Fiedoruk K, Piktel E, Mystkowska J, Janmey P A. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. Journal of Nanobiotechnology, 2019, 17(1): 81

DOI

38
Gomez-Chavarin M, Prado-Prone G, Padilla P, Santos J R, Gutierrez-Ospina G, Garcia-Macedo J A. Dopamine released from TiO2 semicrystalline lattice implants attenuates motor symptoms in rats treated with 6-hydroxydopamine. ACS Omega, 2019, 4(5): 7953–7962

DOI

39
Xiao Z G, Wang L S, Lv C Y, Guo S L, Lu X X, Tao L W, Duan Q S, Yang Q Y, Luo Z G. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. International Journal of Biological Macromolecules, 2020, 143: 401–412

DOI

40
Satpute S K, Mone N S, Das P, Banat I M, Banpurkar A G. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 2019, 19(1): 39

DOI

41
Ma X K, Lee N H, Oh H J, Kim J W, Rhee C K, Park K S, Kim S J. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 358(1–3): 172–176

DOI

42
Wang L, Yu Y B, He H, Zhang Y, Qin X B, Wang B Y. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Scientific Reports, 2017, 7(1): 12845

DOI

43
Schroder A, Sprakel J, Schroen K, Berton-Carabin C C. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Soft Matter, 2017, 13(17): 3190–3198

DOI

44
Shi S Q, Wang Y Q, Liu Y H, Wang L. A new method for calculating the viscosity of W/O and O/W emulsion. Journal of Petroleum Science Engineering, 2018, 171: 928–937

DOI

45
Zhang Y, Lu H S, Wang B G, Wang N, Liu D F. pH-responsive non-Pickering emulsion stabilized by dynamic covalent bond surfactants and nano-SiO2 particles. Langmuir, 2020, 36(50): 15230–15239

DOI

46
Ali N, Bilal M, Khan A, Ali F, Iqbal H M N. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Science of the Total Environment, 2020, 704: 135391

DOI

47
Karthick A, Roy B, Chattopadhyay P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. Journal of Environmental Management, 2019, 243: 187–205

DOI

48
Pal N, Verma A, Ojha K, Mandal A. Nanoparticle-modified gemini surfactant foams as efficient displacing fluids for enhanced oil recovery. Journal of Molecular Liquids, 2020, 310: 113193

DOI

49
Zhong X, Li C C, Pu H, Zhou Y X, Zhao J X J. Increased nonionic surfactant efficiency in oil recovery by integrating with hydrophilic silica nanoparticle. Energy & Fuels, 2019, 33(9): 8522–8529

DOI

50
Tcholakova S, Denkov N D, Lips A. Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 2008, 10(12): 1608–1627

DOI

51
Dai C L, Li H, Zhao M W, Wu Y N, You Q, Sun Y P, Zhao G, Xu K. Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-heptane/water interface. Chemical Engineering Science, 2018, 179: 73–82

DOI

52
Jia H, Wu H Y, Wei X, Han Y G, Wang Q X, Song J Y, Dai J J, Yan H, Liu D X. Investigation on the effects of AlOOH nanoparticles on sodium dodecylbenzenesulfonate stabilized o/w emulsion stability for EOR. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 603: 125278

DOI

53
Xue W, Yang H Q, Du Z P. Synthesis of pH-responsive inorganic Janus nanoparticles and experimental investigation of the stability of their Pickering emulsions. Langmuir, 2017, 33(39): 10283–10290

DOI

54
Yao C J, Lei G L, Hou J, Xu X H, Wang D, Steenhuis T S. Enhanced oil recovery using micron-size polyacrylamide elastic microspheres: underlying mechanisms and displacement experiments. Industrial & Engineering Chemistry Research, 2015, 54(43): 10925–10934

DOI

55
Xie K, Cao B, Lu X G, Jiang W D, Zhang Y B, Li Q, Song K P, Liu J X, Wang W, Lv J L, Na R. Matching between the diameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an offshore oilfield. Journal of Petroleum Science Engineering, 2019, 177: 558–569

DOI

Outlines

/