Frontiers of Chemical Science and Engineering >
The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery
Received date: 04 May 2021
Accepted date: 16 Jul 2021
Published date: 15 Jul 2022
Copyright
Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L–1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.
Han Jia , Jiajun Dai , Tingyi Wang , Yingbiao Xu , Lingyu Zhang , Jianan Wang , Lin Song , Kaihe Lv , Dexin Liu , Pan Huang . The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(7) : 1101 -1113 . DOI: 10.1007/s11705-021-2095-1
1 |
McClements D J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 2020, 38: 107287
|
2 |
Manzano M, Vallet-Regi M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634
|
3 |
McNamara K, Tofail S A M. Nanoparticles in biomedical applications. Advances in Physics: X, 2017, 2(1): 54–88
|
4 |
Rizvi S A, Saleh A M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 2018, 26(1): 64–70
|
5 |
Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045–1057
|
6 |
Modena M M, Ruhle B, Burg T P, Wuttke S. Nanoparticle characterization: what to measure? Advanced Materials, 2019, 31(32): 1901556
|
7 |
Wu S H, Mou C Y, Lin H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875
|
8 |
Zhang C N, Dong Y, Gao J, Wang X L, Jiang Y J. Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1296–1311
|
9 |
Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135
|
10 |
Wu Q, Zhang J C, Wang S P, Chen B J, Feng Y J, Pei Y B, Yan Y, Tang L C, Qiu H Y, Wu L. Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating. Frontiers of Chemical Science and Engineering, 2020, 15(4): 969–983
|
11 |
Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir, 2007, 23(7): 3626–3636
|
12 |
Binks B P, Rodrigues J A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir, 2007, 23(14): 7436–7439
|
13 |
Zhao M W, Wang R Y, Dai C L, Wu X P, Wu Y R, Dai Y J, Wu Y N. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length. Chemical Engineering Science, 2019, 206: 203–211
|
14 |
Lian P, Jia H, Wei X, Han Y G, Wang Q X, Dai J J, Wang D F, Wang S Y, Tian Z H, Yan H. Effects of zwitterionic surfactant adsorption on the component distribution in the crude oil droplet: a molecular simulation study. Fuel, 2021, 283: 119252
|
15 |
Liu J P, Dai Z W, Li C J, Lv K H, Huang X B, Sun J S, Wei B. Inhibition of the hydration expansion of sichuan gas shale by adsorption of compounded surfactants. Energy & Fuels, 2019, 33(7): 6020–6026
|
16 |
Ngai T, Behrens S H, Auweter H. Novel emulsions stabilized by pH and temperature sensitive microgels. Chemical Communications, 2005, 3: 331–333
|
17 |
Alcazar-Vara L A, Zamudio-Rivera L S, Buenrostro-Gonzalez E. Multifunctional evaluation of a new supramolecular complex in enhanced oil recovery, removal/control of organic damage, and heavy crude oil viscosity reduction. Industrial & Engineering Chemistry Research, 2015, 54(32): 7766–7776
|
18 |
Williams G T, Haynes C J E, Fares M, Caltagirone C, Hiscock J R, Gale P A. Advances in applied supramolecular technologies. Chemical Society Reviews, 2021, 50(4): 2737–2763
|
19 |
Huang T, Meng F, Qi L M. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir, 2010, 26(10): 7582–7589
|
20 |
Liu R, Lu Y Y, Pu W F, Lian K L, Sun L, Du D J, Song Y Y, Sheng J J. Low-energy emulsification of oil-in-water emulsions with self-regulating mobility via a nanoparticle surfactant. Industrial & Engineering Chemistry Research, 2020, 59(41): 18396–18411
|
21 |
Almahfood M, Bai B. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. Journal of Petroleum Science Engineering, 2018, 171: 196–210
|
22 |
Olayiwola S O, Dejam M. Interfacial energy for solutions of nanoparticles, surfactants, and electrolytes. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(4): e16891
|
23 |
Bollineni P K, Dordzie G, Olayiwola S O, Dejam M. An experimental investigation of the viscosity behavior of solutions of nanoparticles, surfactants, and electrolytes. Physics of Fluids, 2021, 33(2): 026601
|
24 |
Zhu G L, Huang Z H, Xu Z Y, Yan L T. Tailoring interfacial nanoparticle organization through entropy. Accounts of Chemical Research, 2018, 51(4): 900–909
|
25 |
Liu Z Y, Guo R H, Xu G X, Huang Z H, Yan L T. Entropy-mediated mechanical response of the interfacial nanoparticle patterning. Nano Letters, 2014, 14(12): 6910–6916
|
26 |
Xu G X, Huang Z H, Chen P Y, Cui T Q, Zhang X H, Miao B, Yan L T. Optimal reactivity and improved self-healing capability of structurally dynamic polymers grafted on Janus nanoparticles governed by chain stiffness and spatial organization. Small, 2017, 13(13): 1603155
|
27 |
Jia H, Dai J J, Huang P, Han Y G, Wang Q X, He J, Song J Y, Wei X, Yan H, Liu D X. Application of novel amphiphilic Janus-SiO2 nanoparticles for an efficient demulsification of crude oil/water emulsions. Energy & Fuels, 2020, 34(11): 13977–13984
|
28 |
Walther A, Mueller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261
|
29 |
Liu Y J, Hu J K, Yu X T, Xu X Y, Gao Y, Li H M, Liang F X. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of Colloid and Interface Science, 2017, 490: 357–364
|
30 |
Yoon K Y, Son H A, Choi S K, Kim J W, Sung W M, Kim H T. Core flooding of complex nanoscale colloidal dispersions for enhanced oil recovery by in situ formation of stable oil-in-water Pickering emulsions. Energy & Fuels, 2016, 30(4): 2628–2635
|
31 |
Yin T H, Yang Z H, Zhang F F, Lin M Q, Zhang J, Dong Z X. Assembly and mechanical response of amphiphilic Janus nanosheets at oil-water interfaces. Journal of Colloid and Interface Science, 2021, 583: 214–221
|
32 |
Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499
|
33 |
Jia H, Leng X, Lian P, Han Y G, Wang Q X, Wang S Y, Sun T N, Liang Y P, Huang P, Lv K H. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. Soft Matter, 2019, 15(27): 5529–5536
|
34 |
Olayiwola S O, Dejam M. Comprehensive experimental study on the effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs. Journal of Molecular Liquids, 2021, 325: 115178
|
35 |
Olayiwola S O, Dejam M. Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage. Journal of Molecular Liquids, 2020, 317: 114228
|
36 |
Jia H, Huang P, Han Y G, Wang Q X, Wei X, Huang W J, Dai J J, Song J Y, Yan H, Liu D X. Synergistic effects of Janus graphene oxide and surfactants on the heavy oil/water interfacial tension and their application to enhance heavy oil recovery. Journal of Molecular Liquids, 2020, 314: 113791
|
37 |
Bucki R, Niemirowicz-Laskowska K, Deptula P, Wilczewska A Z, Misiak P, Durnas B, Fiedoruk K, Piktel E, Mystkowska J, Janmey P A. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. Journal of Nanobiotechnology, 2019, 17(1): 81
|
38 |
Gomez-Chavarin M, Prado-Prone G, Padilla P, Santos J R, Gutierrez-Ospina G, Garcia-Macedo J A. Dopamine released from TiO2 semicrystalline lattice implants attenuates motor symptoms in rats treated with 6-hydroxydopamine. ACS Omega, 2019, 4(5): 7953–7962
|
39 |
Xiao Z G, Wang L S, Lv C Y, Guo S L, Lu X X, Tao L W, Duan Q S, Yang Q Y, Luo Z G. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. International Journal of Biological Macromolecules, 2020, 143: 401–412
|
40 |
Satpute S K, Mone N S, Das P, Banat I M, Banpurkar A G. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 2019, 19(1): 39
|
41 |
Ma X K, Lee N H, Oh H J, Kim J W, Rhee C K, Park K S, Kim S J. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 358(1–3): 172–176
|
42 |
Wang L, Yu Y B, He H, Zhang Y, Qin X B, Wang B Y. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Scientific Reports, 2017, 7(1): 12845
|
43 |
Schroder A, Sprakel J, Schroen K, Berton-Carabin C C. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Soft Matter, 2017, 13(17): 3190–3198
|
44 |
Shi S Q, Wang Y Q, Liu Y H, Wang L. A new method for calculating the viscosity of W/O and O/W emulsion. Journal of Petroleum Science Engineering, 2018, 171: 928–937
|
45 |
Zhang Y, Lu H S, Wang B G, Wang N, Liu D F. pH-responsive non-Pickering emulsion stabilized by dynamic covalent bond surfactants and nano-SiO2 particles. Langmuir, 2020, 36(50): 15230–15239
|
46 |
Ali N, Bilal M, Khan A, Ali F, Iqbal H M N. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Science of the Total Environment, 2020, 704: 135391
|
47 |
Karthick A, Roy B, Chattopadhyay P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. Journal of Environmental Management, 2019, 243: 187–205
|
48 |
Pal N, Verma A, Ojha K, Mandal A. Nanoparticle-modified gemini surfactant foams as efficient displacing fluids for enhanced oil recovery. Journal of Molecular Liquids, 2020, 310: 113193
|
49 |
Zhong X, Li C C, Pu H, Zhou Y X, Zhao J X J. Increased nonionic surfactant efficiency in oil recovery by integrating with hydrophilic silica nanoparticle. Energy & Fuels, 2019, 33(9): 8522–8529
|
50 |
Tcholakova S, Denkov N D, Lips A. Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 2008, 10(12): 1608–1627
|
51 |
Dai C L, Li H, Zhao M W, Wu Y N, You Q, Sun Y P, Zhao G, Xu K. Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-heptane/water interface. Chemical Engineering Science, 2018, 179: 73–82
|
52 |
Jia H, Wu H Y, Wei X, Han Y G, Wang Q X, Song J Y, Dai J J, Yan H, Liu D X. Investigation on the effects of AlOOH nanoparticles on sodium dodecylbenzenesulfonate stabilized o/w emulsion stability for EOR. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 603: 125278
|
53 |
Xue W, Yang H Q, Du Z P. Synthesis of pH-responsive inorganic Janus nanoparticles and experimental investigation of the stability of their Pickering emulsions. Langmuir, 2017, 33(39): 10283–10290
|
54 |
Yao C J, Lei G L, Hou J, Xu X H, Wang D, Steenhuis T S. Enhanced oil recovery using micron-size polyacrylamide elastic microspheres: underlying mechanisms and displacement experiments. Industrial & Engineering Chemistry Research, 2015, 54(43): 10925–10934
|
55 |
Xie K, Cao B, Lu X G, Jiang W D, Zhang Y B, Li Q, Song K P, Liu J X, Wang W, Lv J L, Na R. Matching between the diameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an offshore oilfield. Journal of Petroleum Science Engineering, 2019, 177: 558–569
|
/
〈 | 〉 |