REVIEW ARTICLE

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

  • Linwei Zhu 1 ,
  • Chun Ding 1 ,
  • Tengyang Zhu 1 ,
  • Yan Wang , 1,2
Expand
  • 1. Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430074, China
  • 2. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 14 Apr 2021

Accepted date: 12 Jun 2021

Published date: 15 May 2022

Copyright

2021 Higher Education Press

Abstract

During the last decades, the utilization of osmotic pressure-driven forward osmosis technology for wastewater treatment has drawn great interest, due to its high separation efficiency, low membrane fouling propensity, high water recovery and relatively low energy consumption. This review paper summarizes the implementation of forward osmosis technology for various wastewater treatment including municipal sewage, landfill leachate, oil/gas exploitation wastewater, textile wastewater, mine wastewater, and radioactive wastewater. However, membrane fouling is still a critical issue, which affects water flux stability, membrane life and operating cost. Different membrane fouling types and corresponding fouling mechanisms, including organic fouling, inorganic fouling, biofouling and combined fouling are therefore further discussed. The fouling control strategies including feed pre-treatment, operation condition optimization, membrane selection and modification, membrane cleaning and tailoring the chemistry of draw solution are also reviewed comprehensively. At the end of paper, some recommendations are proposed.

Cite this article

Linwei Zhu , Chun Ding , Tengyang Zhu , Yan Wang . A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(5) : 661 -680 . DOI: 10.1007/s11705-021-2084-4

Acknowledgments

The authors thank the financial supports from National Key Research and Development Program of China (Grant Nos. 2020YFB1709301 and 2020YFB1709304).
1
Akanda A S, Nusrat F, Hasan M A, Fallatah O. Leveraging earth observations to improve data resolution and tracking of sustainable development goals in water resources and public health. In: American Geophysical Union Fall Meeting. Washington: American Geophysical Union, 2017, Abstract #PA22A–01

2
Gober P, Kirkwood C W. Vulnerability assessment of climate-induced water shortage in phoenix. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21295–21299

DOI

3
Roberts L. 9 billion? Science, 2011, 333(6042): 540–543

DOI

4
Wolde Rufael Y. Coal consumption and economic growth revisited. Applied Energy, 2010, 87(1): 160–167

DOI

5
Ebrahimi M, Willershausen D, Ashaghi K S, Engel L, Placido L, Mund P, Bolduan P, Czermak P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination, 2010, 250(3): 991–996

DOI

6
Cao D, Jin J, Wang Q, Song X, Hao X, Iritani E, Katagiri N. Ultrafiltration recovery of alginate: membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chinese Journal of Chemical Engineering, 2020, 28(11): 2881–2889

DOI

7
Nasiri M, Jafari I, Parniankhoy B. Oil and gas produced water management: a review of treatment technologies, challenges, and opportunities. Chemical Engineering Communications, 2017, 204(8): 990–1005

DOI

8
Ozgun H, Ersahin M E, Erdem S, Atay B, Kose B, Kaya R, Altinbas M, Sayili S, Hoshan P, Atay D, et al. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(8): 1576–1583

DOI

9
Liu B, Chen C, Zhao P, Li T, Liu C, Wang Q, Chen Y, Crittenden J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574

DOI

10
Taherian M, Mousavi S M, Chamani H. An agent-based simulation with NetLogo platform to evaluate forward osmosis process (PRO Mode). Chinese Journal of Chemical Engineering, 2018, 26(12): 2487–2494

DOI

11
Zhao D, Chen S, Guo C X, Zhao Q, Lu X. Multi-functional forward osmosis draw solutes for seawater desalination. Chinese Journal of Chemical Engineering, 2016, 24(1): 23–30

DOI

12
Long Q W, Shen L, Chen R, Huang J Q, Xiong S, Wang Y. Synthesis and application of organic phosphonate salts as draw solutes in forward osmosis for oil-water separation. Environmental Science & Technology, 2016, 50(21): 12022–12029

DOI

13
Coday B D, Xu P, Beaudry E G, Herron J, Lampi K, Hancock N T, Cath T Y. The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 2014, 333(1): 23–35

DOI

14
Lutchmiah K, Verliefde A, Roest K, Rietveld L C, Cornelissen E. Forward osmosis for application in wastewater treatment: a review. Water Research, 2014, 58: 179–197

DOI

15
Korenak J, Basu S, Balakrishnan M, Hélix Nielsen C, Petrinic I. Forward osmosis in wastewater treatment processes. Acta Chimica Slovenica, 2017, 64(1): 83–94

DOI

16
Hickenbottom K L, Hancock N T, Hutchings N R, Appleton E W, Beaudry E G, Xu P, Cath T Y. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 2013, 312: 60–66

DOI

17
Coday B D, Almaraz N, Cath T Y. Forward osmosis desalination of oil and gas wastewater: impacts of membrane selection and operating conditions on process performance. Journal of Membrane Science, 2015, 488: 40–55

DOI

18
Coday B D, Hoppe Jones C, Wandera D, Shethji J, Herron J, Lampi K, Snyder S A, Cath T Y. Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. Journal of Membrane Science, 2016, 499: 491–502

DOI

19
Bell E A, Poynor T E, Newhart K B, Regnery J, Coday B D, Cath T Y. Produced water treatment using forward osmosis membranes: evaluation of extended-time performance and fouling. Journal of Membrane Science, 2017, 525: 77–88

DOI

20
Maltos R A, Regnery J, Almaraz N, Fox S, Schutter M, Cath T J, Veres M, Coday B D, Cath T Y. Produced water impact on membrane integrity during extended pilot testing of forward osmosis-reverse osmosis treatment. Desalination, 2018, 440: 99–110

DOI

21
Islam M S, Touati K, Rahaman M S. Feasibility of a hybrid membrane-based process (MF-FO-MD) for fracking wastewater treatment. Separation and Purification Technology, 2019, 229: 115802

DOI

22
Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. Nom and TEP fouling of a forward osmosis (FO) membrane: foulant identification and cleaning. Journal of Membrane Science, 2012, 421: 217–224

DOI

23
Zaviska F, Chun Y, Heran M, Zou L. Using FO as pre-treatment of RO for high scaling potential brackish water: energy and performance optimization. Journal of Membrane Science, 2015, 492: 430–438

DOI

24
Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: opportunities and challenges. Journal of Membrane Science, 2012, 396: 1–21

DOI

25
Shaffer D L, Werber J R, Jaramillo H, Lin S, Elimelech M. Forward osmosis: where are we now? Desalination, 2015, 356: 271–284

DOI

26
Ansari A J, Hai F I, Price W E, Drewes J E, Nghiem L D. Forward osmosis as a platform for resource recovery from municipal wastewater—a critical assessment of the literature. Journal of Membrane Science, 2017, 529: 195–206

DOI

27
Valladares Linares R, Li Z, Sarp S, Bucs S S, Amy G, Vrouwenvelder J S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 2014, 66: 122–139

DOI

28
She Q, Wang R, Fane A G, Tang C Y. Membrane fouling in osmotically driven membrane processes: a review. Journal of Membrane Science, 2016, 499: 201–233

DOI

29
Li L, Liu X P, Li H Q. A review of forward osmosis membrane fouling: types, research methods and future prospects. Environmental Technology Reviews, 2017, 6(1): 26–46

DOI

30
Chen Q, Xu W, Ge Q. Novel multicharge hydroacid complexes that effectively remove heavy metal ions from water in forward osmosis processes. Environmental Science & Technology, 2018, 52(7): 4464–4471

DOI

31
Ding C, Zhang X, Shen L, Huang J, Lu A, Zhong F, Wang Y. Application of polysaccharide derivatives as novel draw solutes in forward osmosis for desalination and protein concentration. Chemical Engineering Research & Design, 2019, 146: 211–220

DOI

32
Xu W, Chen Q, Ge Q. Recent advances in forward osmosis (FO) membrane: chemical modifications on membranes for FO processes. Desalination, 2017, 419: 101–116

DOI

33
Gu Y, Wang Y N, Wei J, Tang C Y. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. Water Research, 2013, 47(5): 1867–1874

DOI

34
Wang Z, Tang J, Zhu C, Dong Y, Wang Q, Wu Z. Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. Journal of Membrane Science, 2015, 475: 184–192

DOI

35
Wang Y N, Li X, Wang R. Silica scaling and scaling control in pressure retarded osmosis processes. Journal of Membrane Science, 2017, 541: 73–84

DOI

36
Fam W, Phuntsho S, Lee J H, Shon H K. Performance comparison of thin-film composite forward osmosis membranes. Desalination and Water Treatment, 2013, 51(31–33): 6274–6280

DOI

37
Munoz Elguera A, Nunez A, Nishida M. Experimental test of Toyobo membranes for seawater desalination at Las Palmas, Spain. Desalination, 1999, 125(1–3): 55–64

DOI

38
Ren J, McCutcheon J R. A new commercial thin film composite membrane for forward osmosis. Desalination, 2014, 343: 187–193

DOI

39
Yap W J, Zhang J, Lay W C, Cao B, Fane A G, Liu Y. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222

DOI

40
Kedwell K C, Quist-Jensen C A, Giannakakis G, Christensen M L. Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Separation and Purification Technology, 2018, 197: 449–456

DOI

41
Ren J, McCutcheon J R. A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination, 2018, 442: 44–50

DOI

42
Zhang X, Shen L, Guan C Y, Liu C X, Lang W Z, Wang Y. Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. Journal of Membrane Science, 2018, 564: 328–341

DOI

43
Zhang X, Xiong S, Liu C X, Shen L, Ding C, Guan C Y, Wang Y. Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chemical Engineering Science, 2019, 207: 54–68

DOI

44
Zhang X, Shen L, Lang W Z, Wang Y. Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process. Journal of Membrane Science, 2017, 535: 188–199

DOI

45
Soroush A, Ma W, Silvino Y, Rahaman M S. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets. Environmental Science. Nano, 2015, 2(4): 395–405

DOI

46
Nguyen A, Azari S, Zou L. Coating zwitterionic amino acid L-DOPA to increase fouling resistance of forward osmosis membrane. Desalination, 2013, 312: 82–87

DOI

47
Shen L, Hung W S, Zuo J, Zhang X, Lai J Y, Wang Y. High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. Journal of Membrane Science, 2019, 570–571: 112–119

DOI

48
Xiong S, Xu S, Zhang S, Phommachanh A, Wang Y. Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. Journal of Membrane Science, 2019, 572: 281–290

DOI

49
Ding C, Zhang X, Xiong S, Shen L, Yi M, Liu B, Wang Y. Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. Journal of Membrane Science, 2019, 593: 117429

DOI

50
Zhang M, She Q, Yan X, Tang C Y. Effect of reverse solute diffusion on scaling in forward osmosis: a new control strategy by tailoring draw solution chemistry. Desalination, 2017, 401: 230–237

DOI

51
Ge Q, Lau C H, Liu M. A novel multi-charged draw solute that removes organic arsenicals from water in a hybrid membrane process. Environmental Science & Technology, 2018, 52(6): 3812–3819

DOI

52
Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination. Desalination, 2011, 278(1–3): 157–164

DOI

53
Xu Y, Peng X, Tang C Y, Fu Q S, Nie S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. Journal of Membrane Science, 2010, 348(1–2): 298–309

DOI

54
Ge Q, Ling M, Chung T S. Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future. Journal of Membrane Science, 2013, 442: 225–237

DOI

55
Xia L L, Li C L, Wang Y. In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. Journal of Membrane Science, 2016, 498: 263–275

DOI

56
Johnson D J, Suwaileh W A, Mohammed A W, Hilal N. Osmotic’s potential: an overview of draw solutes for forward osmosis. Desalination, 2018, 434: 100–120

DOI

57
Kravath R E, Davis J A. Desalination of sea water by direct osmosis. Desalination, 1975, 16(2): 151–155

DOI

58
Tang W, Ng H Y. Concentration of brine by forward osmosis: performance and influence of membrane structure. Desalination, 2008, 224(1–3): 143–153

DOI

59
Garcia Castello E M, McCutcheon J R, Elimelech M. Performance evaluation of sucrose concentration using forward osmosis. Journal of Membrane Science, 2009, 338(1–2): 61–66

DOI

60
McCutcheon J R, McGinnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 2006, 278(1-2): 114–123

DOI

61
McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 2005, 174(1): 1–11

DOI

62
Tan C, Ng H. A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalination and Water Treatment, 2010, 13(1–3): 356–361

DOI

63
Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 2011, 375(1–2): 172–181

DOI

64
Kim Y, Chekli L, Shim W G, Phuntsho S, Li S, Ghaffour N, Leiknes T, Shon H K. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system. Bioresource Technology, 2016, 210: 26–34

DOI

65
Ge Q, Wang P, Wan C, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 2012, 46(11): 6236–6243

DOI

66
Huang J Q, Long Q W, Xiong S, Shen L, Wang Y. Application of poly(4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment. Desalination, 2017, 421: 40–46

DOI

67
Zhao D, Chen S, Wang P, Zhao Q, Lu X. A dendrimer-based forward osmosis draw solute for seawater desalination. Industrial & Engineering Chemistry Research, 2014, 53(42): 16170–16175

DOI

68
Hau N T, Chen S S, Nguyen N C, Huang K Z, Ngo H H, Guo W. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. Journal of Membrane Science, 2014, 455: 305–311

DOI

69
Long Q, Wang Y. Sodium tetraethylenepentamine heptaacetate as novel draw solute for forward osmosis—synthesis, application and recovery. Energies, 2015, 8(11): 12917–12928

DOI

70
Long Q W, Wang Y. Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance. AIChE Journal, 2016, 62(4): 1226–1235

DOI

71
Huang J, Xiong S, Long Q, Shen L, Wang Y. Evaluation of food additive sodium phytate as a novel draw solute for forward osmosis. Desalination, 2018, 448: 87–92

DOI

72
Ge Q, Yang L, Cai J, Xu W, Chen Q, Liu M. Hydroacid magnetic nanoparticles in forward osmosis for seawater desalination and efficient regeneration via integrated magnetic and membrane separations. Journal of Membrane Science, 2016, 520: 550–559

DOI

73
Ling M M, Wang K Y, Chung T S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Industrial & Engineering Chemistry Research, 2010, 49(12): 5869–5876

DOI

74
Li D, Wang H. Smart draw agents for emerging forward osmosis application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(45): 14049–14060

DOI

75
Zhang H, Li J, Cui H, Li H, Yang F. Forward osmosis using electric-responsive polymer hydrogels as draw agents: influence of freezing-thawing cycles, voltage, feed solutions on process performance. Chemical Engineering Journal, 2015, 259: 814–819

DOI

76
Ou R, Wang Y, Wang H, Xu T. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination, 2013, 318: 48–55

DOI

77
Yang Y, Chen M, Zou S, Yang X, Long T E, He Z. Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment. Desalination, 2017, 422: 134–141

DOI

78
Ge Q, Chung T S. Hydroacid complexes: a new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications, 2013, 49(76): 8471–8473

DOI

79
Ge Q, Han G, Chung T S. Effective As(III) removal by a multi-charged hydroacid complex draw solute facilitated forward osmosis-membrane distillation (FO-MD) processes. Environmental Science & Technology, 2016, 50(5): 2363–2370

DOI

80
Hunter J V, Heukelekian H. The composition of domestic sewage fractions. Journal of the Water Pollution Control Federation, 1965: 1142–1163

81
Hench K R, Bissonnette G K, Sexstone A J, Coleman J G, Garbutt K, Skousen J G. Fate of physical, chemical, and microbial contaminants in domestic wastewater following treatment by small constructed wetlands. Water Research, 2003, 37(4): 921–927

DOI

82
Sun Y, Tian J, Zhao Z, Shi W, Liu D, Cui F. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: a comparison between direct FO and OMBR. Water Research, 2016, 104: 330–339

DOI

83
Ferrari F, Pijuan M, Rodriguez Roda I, Blandin G. Exploring submerged forward osmosis for water recovery and pre-concentration of wastewater before anaerobic digestion: a pilot scale study. Membranes (Basel), 2019, 9(97): 1–13

DOI

84
Ab Hamid N H, Wang D K, Smart S, Ye L. Achieving stable operation and shortcut nitrogen removal in a long-term operated aerobic forward osmosis membrane bioreactor (FOMBR) for treating municipal wastewater. Chemosphere, 2020, 260: 127581

DOI

85
Aftab B, Khan S J, Maqbool T, Hankins N P. High strength domestic wastewater treatment with submerged forward osmosis membrane bioreactor. Water Science and Technology, 2015, 72(1): 141–149

DOI

86
Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. Bioresource Technology, 2020, 307: 123254

DOI

87
Qiu G, Zhang S, Srinivasa Raghavan D S, Das S, Ting Y P. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level. Bioresource Technology, 2016, 219: 298–310

DOI

88
Vinardell S, Astals S, Mata Alvarez J, Dosta J. Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production. Bioresource Technology, 2020, 297: 122395

DOI

89
Li J, Niu A, Lu C J, Zhang J H, Junaid M, Strauss P R, Xiao P, Wang X, Ren Y W, Pei D S. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation. Chemosphere, 2017, 168: 112–121

DOI

90
Iskander S M, Zou S, Brazil B, Novak J T, He Z. Energy consumption by forward osmosis treatment of landfill leachate for water recovery. Waste Management (New York, N.Y.), 2017, 63: 284–291

DOI

91
Zhou Y, Huang M, Deng Q, Cai T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination, 2017, 420: 99–105

DOI

92
Iskander S M, Novak J T, He Z. Reduction of reagent requirements and sludge generation in fenton’s oxidation of landfill leachate by synergistically incorporating forward osmosis and humic acid recovery. Water Research, 2019, 151: 310–317

DOI

93
Wu S, Zou S, Liang G, Qian G, He Z. Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Science of the Total Environment, 2018, 610–611: 137–146

DOI

94
Qin M, Molitor H, Brazil B, Novak J T, He Z. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system. Bioresource Technology, 2016, 200: 485–492

DOI

95
Warner N R, Christie C A, Jackson R B, Vengosh A. Impacts of shale gas wastewater disposal on water quality in western pennsylvania. Environmental Science & Technology, 2013, 47(20): 11849–11857

DOI

96
Torres L, Yadav O P, Khan E. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, 2016, 539: 478–493

DOI

97
Hagström E L, Lyles C, Pattanayek M, DeShields B, Berkman M P. Produced water—emerging challenges, risks, and opportunities. Environmental Claims Journal, 2016, 28(2): 122–139

DOI

98
Frederic E, Guigui C, Jacob M, Machinal C, Krifi A, Line A, Schmitz P. Modelling of fluid flow distribution in multichannel ceramic membrane: application to the filtration of produced water. Journal of Membrane Science, 2018, 567: 290–302

DOI

99
Lokare O R, Tavakkoli S, Wadekar S, Khanna V, Vidic R D. Fouling in direct contact membrane distillation of produced water from unconventional gas extraction. Journal of Membrane Science, 2017, 524: 493–501

DOI

100
Orem W, Tatu C, Varonka M, Lerch H, Bates A, Engle M, Crosby L, McIntosh J. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. International Journal of Coal Geology, 2014, 126: 20–31

DOI

101
Mondal S, Wickramasinghe S R. Produced water treatment by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2008, 322(1): 162–170

DOI

102
Zafar M S, Tausif M, Mohsin M, Ahmad S W, Zia-ul-Haq M. Potato starch as a coagulant for dye removal from textile wastewater. Water, Air, and Soil Pollution, 2015, 226(8): 244

DOI

103
Freitas T, Oliveira V, De Souza M, Geraldino H, Almeida V, Fávaro S, Garcia J. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant. Industrial Crops and Products, 2015, 76: 538–544

DOI

104
Korenak J, Hélix Nielsen C, Bukšek H, Petrinić I. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. Journal of Cleaner Production, 2019, 210: 1483–1495

DOI

105
Han G, Liang C Z, Chung T S, Weber M, Staudt C, Maletzko C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 2016, 91: 361–370

DOI

106
Roberts R, Johnson M. Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environmental Pollution (1970), 1978, 16(4): 293–310

107
Vital B, Bartacek J, Ortega Bravo J C, Jeison D. Treatment of acid mine drainage by forward osmosis: heavy metal rejection and reverse flux of draw solution constituents. Chemical Engineering Journal, 2018, 332: 85–91

DOI

108
Phuntsho S, Kim J E, Johir M A H, Hong S, Li Z, Ghaffour N, Leiknes T, Shon H K. Fertiliser drawn forward osmosis process: pilot-scale desalination of mine impaired water for fertigation. Journal of Membrane Science, 2016, 508: 22–31

DOI

109
Kim J E, Phuntsho S, Chekli L, Choi J Y, Shon H K. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water. Desalination, 2018, 429: 96–104

DOI

110
Lee S, Kim Y, Park J, Shon H K, Hong S. Treatment of medical radioactive liquid waste using forward osmosis (FO) membrane process. Journal of Membrane Science, 2018, 556: 238–247

DOI

111
Liu X, Wu J, Wang J. Removal of Cs(I) from simulated radioactive wastewater by three forward osmosis membranes. Chemical Engineering Journal, 2018, 344: 353–362

DOI

112
Mi B, Elimelech M. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1–2): 337–345

DOI

113
Chen L, Gu Y, Cao C, Zhang J, Ng J W, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research, 2014, 50: 114–123

DOI

114
Qiu G, Law Y M, Das S, Ting Y P. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environmental Science & Technology, 2015, 49(10): 6156–6163

DOI

115
Li X M, Zhao B, Wang Z, Xie M, Song J, Nghiem L D, He T, Yang C, Li C, Chen G. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system. Water Science and Technology, 2014, 69(5): 1036–1044

DOI

116
Minier-Matar J, Hussain A, Janson A, Wang R, Fane A G, Adham S. Application of forward osmosis for reducing volume of produced/process water from oil and gas operations. Desalination, 2015, 376: 1–8

DOI

117
Chiao Y H, Chen S T, Patra T, Hsu C H, Sengupta A, Hung W S, Huang S H, Qian X, Wickramasinghe R, Chang Y, . Zwitterionic forward osmosis membrane modified by fast second interfacial polymerization with enhanced antifouling and antimicrobial properties for produced water pretreatment. Desalination, 2019, 469: 114090

DOI

118
Lu D, Liu Q, Zhao Y, Liu H, Ma J. Treatment and energy utilization of oily water via integrated ultrafiltration-forward osmosis-membrane distillation (UF-FO-MD) system. Journal of Membrane Science, 2018, 548: 275–287

DOI

119
Jin X, She Q, Ang X, Tang C Y. Removal of boron and arsenic by forward osmosis membrane: influence of membrane orientation and organic fouling. Journal of Membrane Science, 2012, 389: 182–187

DOI

120
Chen D, Werber J R, Zhao X, Elimelech M. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. Journal of Membrane Science, 2017, 534: 100–108

DOI

121
Mi B, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science, 2008, 320(1–2): 292–302

DOI

122
Shaffer D L, Tousley M E, Elimelech M. Influence of polyamide membrane surface chemistry on gypsum scaling behavior. Journal of Membrane Science, 2017, 525: 249–256

DOI

123
Gwak G, Hong S. New approach for scaling control in forward osmosis (FO) by using an antiscalant-blended draw solution. Journal of Membrane Science, 2017, 530: 95–103

DOI

124
Kim Y, Woo Y C, Phuntsho S, Nghiem L D, Shon H K, Hong S. Evaluation of fertilizer-drawn forward osmosis for coal seam gas reverse osmosis brine treatment and sustainable agricultural reuse. Journal of Membrane Science, 2017, 537: 22–31

DOI

125
Zhang Q, Jie Y W, Loong W L, Zhang J, Fane A G, Kjelleberg S, Rice S A, McDougald D. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Research, 2014, 58: 141–151

DOI

126
Zhang J, Loong W L C, Chou S, Tang C, Wang R, Fane A G. Membrane biofouling and scaling in forward osmosis membrane bioreactor. Journal of Membrane Science, 2012, 403–404: 8–14

DOI

127
Sardari K, Fyfe P, Lincicome D, Wickramasinghe S R. Aluminum electrocoagulation followed by forward osmosis for treating hydraulic fracturing produced waters. Desalination, 2018, 428: 172–181

DOI

128
Liden T, Hildenbrand Z L, Schug K A. Pretreatment techniques for produced water with subsequent forward osmosis remediation. Water (Basel), 2019, 11(7): 1437

DOI

129
Sun F, Lu D, Ho J S, Chong T H, Zhou Y. Mitigation of membrane fouling in a seawater-driven forward osmosis system for waste activated sludge thickening. Journal of Cleaner Production, 2019, 241: 118373

DOI

130
Im S J, Rho H, Jeong S, Jang A. Organic fouling characterization of a CTA-based spiral-wound forward osmosis (SWFO) membrane used in wastewater reuse and seawater desalination. Chemical Engineering Journal, 2018, 336: 141–151

DOI

131
Law J Y, Mohammad A W, Tee Z K, Zaman N K, Jahim J M, Santanaraj J, Sajab M S. Recovery of succinic acid from fermentation broth by forward osmosis-assisted crystallization process. Journal of Membrane Science, 2019, 583: 139–151

DOI

132
Bansal R C, Goyal M. Activated Carbon Adsorption. 1st ed. Boca Raton: CRC Press Inc., 2005, 1–472

133
Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 2009, 239(1–3): 10–21

DOI

134
Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365(1–2): 34–39

DOI

135
Liden T, Jr Carlton D D, Miyazaki S, Otoyo T, Schug K A. Comparison of the degree of fouling at various flux rates and modes of operation using forward osmosis for remediation of produced water from unconventional oil and gas development. Science of the Total Environment, 2019, 675: 73–80

DOI

136
Boo C, Elimelech M, Hong S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013, 444: 148–156

DOI

137
Ansari A J, Hai F I, He T, Price W E, Nghiem L D. Physical cleaning techniques to control fouling during the pre-concentration of high suspended-solid content solutions for resource recovery by forward osmosis. Desalination, 2018, 429: 134–141

DOI

138
Aftab B, Cho J, Hur J. Intermittent osmotic relaxation: a strategy for organic fouling mitigation in a forward osmosis system treating landfill leachate. Desalination, 2020, 482: 114406

DOI

139
Ryu H, Kim K, Cho H, Park E, Chang Y K, Han J I. Nutrient-driven forward osmosis coupled with microalgae cultivation for energy efficient dewatering of microalgae. Algal Research, 2020, 48: 101880

DOI

140
Motsa M M, Mamba B B, D’Haese A, Hoek E M, Verliefde A R. Organic fouling in forward osmosis membranes: the role of feed solution chemistry and membrane structural properties. Journal of Membrane Science, 2014, 460: 99–109

DOI

141
Chun Y, Mulcahy D, Zou L, Kim I S. A short review of membrane fouling in forward osmosis processes. Membranes, 2017, 7(2): 30

DOI

142
Chen G, Wang Z, Nghiem L D, Li X M, Xie M, Zhao B, Zhang M, Song J, He T. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis: membrane fouling and mitigation. Desalination, 2015, 366: 113–120

DOI

143
Duong P H H, Chung T S. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water. Journal of Membrane Science, 2014, 452: 117–126

DOI

144
Shakeri A, Salehi H, Ghorbani F, Amini M, Naslhajian H. Polyoxometalate based thin film nanocomposite forward osmosis membrane: superhydrophilic, anti-fouling, and high water permeable. Journal of Colloid and Interface Science, 2019, 536: 328–338

DOI

145
Shen L, Wang F, Tian L, Zhang X, Ding C, Wang Y. High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. Journal of Membrane Science, 2018, 563: 284–297

DOI

146
Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Applied Materials & Interfaces, 2012, 4(9): 5044–5053

DOI

147
Xiong S, Xu S, Phommachanh A, Yi M, Wang Y. Versatile surface modification of TFC membrane by layer-by-layer assembly of phytic acid-metal complexes for comprehensively enhanced FO performance. Environmental Science & Technology, 2019, 53(6): 3331–3341

DOI

148
Yang E, Chae K J, Alayande A B, Kim K Y, Kim I S. Concurrent performance improvement and biofouling mitigation in osmotic microbial fuel cells using a silver nanoparticle-polydopamine coated forward osmosis membrane. Journal of Membrane Science, 2016, 513: 217–225

DOI

149
Zhang X, Gao S, Tian J, Shan S, Takagi R, Cui F, Bai L, Matsuyama H. Investigation of cleaning strategies for an antifouling thin-film composite forward osmosis membrane for treatment of polymer-flooding produced water. Industrial & Engineering Chemistry Research, 2018, 58(2): 994–1003

DOI

150
Guo H, Yao Z, Wang J, Yang Z, Ma X, Tang C Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242

DOI

151
Mccloskey B D. Novel surface modifications and materials for fouling resistant water purification membranes. Dissertation for the Doctoral Degree. Austin: The University of Texas, 2010, 413–414(9): 82–90

152
Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 2012, 46(20): 11135–11144

DOI

153
Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312: 75–81

DOI

154
Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms. Environmental Science & Technology, 2010, 44(6): 2022–2028

DOI

155
Yoon H, Baek Y, Yu J, Yoon J. Biofouling occurrence process and its control in the forward osmosis. Desalination, 2013, 325: 30–36

DOI

156
Zhao P, Gao B, Yue Q, Shon H K. The performance of forward osmosis process in treating the surfactant wastewater: the rejection of surfactant, water flux and physical cleaning effectiveness. Chemical Engineering Journal, 2015, 281: 688–695

DOI

157
Singh N, Petrinic I, Helix Nielsen C, Basu S, Balakrishnan M. Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Research, 2018, 130: 271–280

DOI

158
Kim C, Lee S, Hong S. Application of osmotic backwashing in forward osmosis: mechanisms and factors involved. Desalination and Water Treatment, 2012, 43(1–3): 314–322

DOI

159
Motsa M M, Mamba B B, Thwala J M, Verliefde A R. Osmotic backwash of fouled FO membranes: cleaning mechanisms and membrane surface properties after cleaning. Desalination, 2017, 402: 62–71

DOI

160
Jiang Y, Liang J, Liu Y. Application of forward osmosis membrane technology for oil sands process-affected water desalination. Water Science and Technology, 2016, 73(8): 1809–1816

DOI

161
Zhao S, Minier Matar J, Chou S, Wang R, Fane A G, Adham S. Gas field produced/process water treatment using forward osmosis hollow fiber membrane: membrane fouling and chemical cleaning. Desalination, 2017, 402: 143–151

DOI

162
Wang X, Hu T, Wang Z, Li X, Ren Y. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Research, 2017, 123: 505–512

DOI

163
Kim Y, Li S, Ghaffour N. Evaluation of different cleaning strategies for different types of forward osmosis membrane fouling and scaling. Journal of Membrane Science, 2020, 596: 117731

DOI

164
Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated RO brines using forward osmosis and membrane distillation. Journal of Membrane Science, 2009, 331(1–2): 31–39

DOI

165
Dong Y, Wang Z, Zhu C, Wang Q, Tang J, Wu Z. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. Journal of Membrane Science, 2014, 471: 192–200

DOI

166
Holloway R W, Achilli A, Cath T Y. The osmotic membrane bioreactor: a critical review. Environmental Science. Water Research & Technology, 2015, 1(5): 581–605

DOI

167
Gwak G, Jung B, Han S, Hong S. Evaluation of poly(aspartic acid sodium salt) as a draw solute for forward osmosis. Water Research, 2015, 80: 294–305

DOI

Outlines

/