1 Introduction
2 Method and in silico experiment
2.1 DRSM
Algorithm 1. Procedures in calculating DRSM models | |
---|---|
1. | For a set of polynomial orders, |
2. | For a set of values, perform linear regression for and select the that results in the smallest sum of squared errors. |
3. | Fine-tune via nonlinear regression and fix. |
4. | Eliminate the insignificant local parameters , by SWR or Lasso. |
5. | Re-estimate the significant parameters by imposing the regression constraints. |
6. | Tabulate the BIC values. |
7. | Select R, and the corresponding model, with the smallest BIC value. |
2.2 Lasso regression
2.3 Case study A: modeling of concentrations
2.4 Case study B: modeling of reaction extents
3 Results and discussion
3.1 Case study A
3.1.1 Results of using Lasso and its comparison with SWR
Fig.1 The dependence of three criteria: (a) GCV, (b) BIC and (c) AIC, on the Lasso weight , and (d) the number of local parameters. The BIC plot shows a clear minimum while the other two criteria fail to show such a minimum. For the BIC case, the number of local parameters γ vs. is given in the lower right subplot. |
Tab.1 Comparison of values for intercept, linear, and quadratic terms estimated through SWR and Lasso for the product species a) |
Item | Order | Linear term | Quadratic term | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x12 | x22 | x32 | x42 | x52 | |||
Lasso | 0 | 0.950 | 0.100 | –0.084 | 0.222 | 0.028 | –0.031 | –0.044 | –0.045 | –0.220 | –0.034 | –0.059 |
1 | 0.162 | –0.137 | 0.047 | –0.118 | –0.075 | 0.026 | ||||||
2 | –0.087 | –0.018 | 0.070 | |||||||||
Stepwise regression | 0 | 0.945 | 0.105 | –0.091 | 0.216 | 0.041 | –0.035 | –0.036 | –0.047 | –0.222 | –0.035 | –0.052 |
1 | 0.180 | –0.141 | 0.045 | –0.109 | –0.072 | 0.033 | ||||||
2 | –0.067 | 0.014 | 0.073 |
a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR). |
Tab.2 Comparison of values for 2FI terms estimated through SWR and Lasso for the product species a) |
Item | Order | x1x2 | x1x3 | x2x3 | x1x4 | x2x4 | x3x4 | x1x5 | x2x5 | x3x5 | x4x5 |
---|---|---|---|---|---|---|---|---|---|---|---|
Lasso | 0 | 0.020 | –0.071 | 0.011 | –0.017 | 0.041 | 0.042 | –0.021 | –0.028 | 0.045 | |
1 | –0.131 | 0.037 | –0.021 | –0.039 | 0.020 | 0.043 | |||||
2 | 0.041 | ||||||||||
Stepwise regression | 0 | 0.018 | –0.069 | 0.059 | 0.064 | –0.021 | –0.019 | –0.043 | 0.054 | ||
1 | –0.125 | 0.027 | –0.032 | –0.023 | –0.027 | 0.039 | 0.060 | ||||
2 | 0.049 |
a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR). |
Tab.3 DRSM model summary of SWR and Lasso for different species |
Species | R | Number of variables | RMSE (in unit of equiv) | RMSE/max (Lasso) | ||||
---|---|---|---|---|---|---|---|---|
SWR & Lasso | SWR | Lasso | SWR (ref.) | Lasso | ΔLasso | |||
S1 | 2 | 1.77 | 37 | 37 | 0.0059 | 0.0062 | 3.8% | 3.8% |
S2 | 2 | 2.18 | 28 | 31 | 0.0639 | 0.0702 | 9.9% | 6.5% |
S3 | 2 | 1.77 | 38 | 42 | 0.0061 | 0.0065 | 7.2% | 6.1% |
S4 | 2 | 2.18 | 28 | 30 | 0.0530 | 0.0570 | 7.4% | 4.4% |
S5 | 2 | 2.18 | 36 | 36 | 0.0463 | 0.0493 | 6.4% | 4.5% |
S6 | 1 | 4.24 | 28 | 27 | 0.0035 | 0.0035 | –0.1% | 5.5% |
S7 | 1 | 2.59 | 22 | 24 | 0.0088 | 0.0089 | 1.4% | 1.7% |
S8 | 2 | 2.59 | 22 | 20 | 0.0084 | 0.0085 | 1.7% | 6.1% |
S9 | 2 | 4.24 | 28 | 24 | 0.0005 | 0.0005 | –0.7% | 6.2% |
S10 | 2 | 4.24 | 26 | 28 | 0.0002 | 0.0003 | 3.4% | 3.2% |
3.1.2 Models from different datasets
Tab.4 Comparison of models estimated from different datasets in case study A |
Species | Number of | RMSEa (10–2 equiv) | RMSEb (10–2 equiv) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Full | Rd1 | Rds12 | Full | Rd1 | Rds12 | Rd1 | ΔRd1 | Rd12 | ΔRd12 | |
S1 | 27 | 26 | 31 | 0.62 | 0.54 | 0.41 | 1.25 | 102% | 1.24 | 101% |
S2 | 28 | 12 | 29 | 7.02 | 9.17 | 6.46 | 17.96 | 156% | 14.38 | 105% |
S3 | 28 | 24 | 24 | 0.65 | 0.50 | 0.49 | 1.30 | 99% | 1.22 | 87% |
S4 | 28 | 19 | 31 | 5.70 | 7.42 | 4.53 | 15.48 | 172% | 14.71 | 158% |
S5 | 36 | 19 | 36 | 4.93 | 7.35 | 4.35 | 22.48 | 356% | 16.23 | 229% |
S6 | 28 | 24 | 27 | 0.35 | 0.13 | 0.43 | 0.77 | 123% | 0.40 | 14% |
S7 | 22 | 20 | 24 | 0.89 | 0.87 | 0.99 | 1.97 | 122% | 0.97 | 9% |
S8 | 22 | 17 | 19 | 0.85 | 0.84 | 0.93 | 1.89 | 121% | 1.03 | 20% |
S9 | 28 | 28 | 24 | 0.05 | 0.03 | 0.06 | 0.08 | 55% | 0.05 | 10% |
S10 | 26 | 27 | 26 | 0.03 | 0.02 | 0.03 | 0.06 | 152% | 0.03 | 17% |
3.1.3 Optimization of process conditions
Tab.5 Factors in the design space and optimal conditions from different formulations |
Item | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | |
---|---|---|---|---|---|---|
Temperature/°C | Solvent volume/(L·mol–1) | Catalyst amount/ equiv | Starting material 2/ equiv | Water amount/ wt-% | ||
Range | Lower | 30 | 0.7 | 0.01 | 1.04 | 0.05 |
Upper | 65 | 1.2 | 0.15 | 1.20 | 0.50 | |
Solutions in coded values | M1 | 0.76 | –1.00 | –0.93 | –1.00 | –0.55 |
M2 | 0.73 | –0.96 | –0.81 | –1.00 | –0.48 | |
M3 | 0.40 | –0.84 | –0.37 | –1.00 | –0.60 | |
Solutions in original units | M1 | 60.84 | 0.70 | 0.015 | 1.04 | 0.152 |
M2 | 60.31 | 0.71 | 0.024 | 1.04 | 0.167 | |
M3 | 54.52 | 0.74 | 0.054 | 1.04 | 0.139 |
Fig.3 Contour plot of the concentration for product (in unit of equiv), with factors 1 and 3 varying at different values. Factor 2 is fixed at 0.7 L·mol–1, factor 4 is fixed at 1.04 equiv, and factor 5 is fixed at 0.152 wt-%, while time is fixed at 6 h. Blue square denotes the optimal condition of M1. |
3.2 Case study B
Tab.6 DRSM model summary of SWR and Lasso for different reactions |
Reaction | R | Number of variables | RMSE (in unit of equiv) | RMSE/max (Lasso) | ||||
---|---|---|---|---|---|---|---|---|
SWR & Lasso | SWR | Lasso | SWR (ref.) | Lasso | ΔLasso | |||
R1 | 4 | 2.81 | 31 | 21 | 0.0032 | 0.0041 | 27% | 0.4% |
R2 | 4 | 2.81 | 30 | 20 | 0.0109 | 0.0150 | 38% | 1.2% |
R3 | 3 | 1.96 | 33 | 32 | 0.0135 | 0.0151 | 11% | 1.5% |
R4 | 2 | 2.82 | 26 | 26 | 0.0059 | 0.0059 | 0% | 1.1% |
R5 | 2 | 8.80 | 25 | 25 | 0.0045 | 0.0045 | 0% | 2.9% |
R6 | 2 | 8.80 | 19 | 19 | 0.0040 | 0.0040 | 0% | 5.5% |
R7 | 2 | 6.24 | 14 | 12 | 0.0027 | 0.0030 | 10% | 6.6% |
Tab.7 Comparison of values estimated through SWR and Lasso for reaction R2 a) |
Item | Order | Linear term | 2FI term | Quadratic term | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x1x2 | x1x3 | x2x3 | x12 | x22 | x33 | |||
Lasso | 0 | 0.3555 | 0.0584 | 0.0527 | –0.0303 | 0.0064 | –0.0035 | –0.0017 | |||
1 | 0.3698 | 0.0146 | 0.0456 | –0.0423 | –0.0017 | ||||||
2 | –0.0437 | –0.0071 | –0.0120 | –0.0064 | 0.0059 | ||||||
3 | –0.0329 | 0.0023 | |||||||||
4 | –0.0186 | ||||||||||
Stepwise regression | 0 | 0.3592 | 0.0572 | 0.0511 | –0.0298 | 0.0065 | –0.0036 | –0.0019 | –0.0047 | 0.0028 | |
1 | 0.3880 | 0.0174 | 0.0500 | –0.0436 | –0.0047 | 0.0028 | |||||
2 | –0.0316 | –0.0489 | –0.0088 | –0.0121 | –0.0043 | 0.0059 | |||||
3 | –0.0460 | –0.0048 | 0.0018 | 0.0021 | 0.0023 | ||||||
4 | 0.0144 | 0.0091 | 0.0029 | 0.0019 |
a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR) |
Tab.8 Comparison of values estimated through SWR and Lasso for reaction R6 a) |
Item | Order | Linear term | 2FI terms | Quadratic term | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x1x2 | x1x3 | x2x3 | x12 | x22 | x33 | |||
Lasso/SWR | 0 | 0.0311 | 0.0085 | –0.0029 | 0.0027 | –0.0021 | 0.0018 | 0.0022 | |||
1 | 0.0446 | 0.0126 | –0.0051 | 0.0050 | –0.0021 | 0.0018 | 0.0051 | ||||
2 | 0.0136 | 0.0041 | –0.0022 | 0.0023 | 0.0029 |
a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR). |