RESEARCH ARTICLE

A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy

  • Yong Luo 1 ,
  • Yuhui Xie 1 ,
  • Renjie Chen 1 ,
  • Ruizhi Zheng 1 ,
  • Hua Wu 1,3 ,
  • Xinxin Sheng , 1,2 ,
  • Delong Xie , 1 ,
  • Yi Mei 1
Expand
  • 1. Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • 2. Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • 3. Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Received date: 21 Sep 2020

Accepted date: 17 Dec 2020

Published date: 15 Oct 2021

Copyright

2021 Higher Education Press

Abstract

Design and exploitation of flame retardant polymers with high electrical conductivity are desired for polymer applications in electronics. Herein, a novel phosphorus-nitrogen intumescent flame retardant was synthesized from pentaerythritol octahydrogen tetraphosphate, phenylphosphonyl dichloride, and aniline. Low-density polyethylene was combined with the flame retardant and multi-walled carbon nanotubes to form a nanocomposite material via a ball-milling and hot-pressing method. The electrical conductivity, mechanical properties, thermal performance, and flame retardancy of the composites were investigated using a four-point probe instrument, universal tensile machine, thermogravimetric analysis, and cone calorimeter tests, respectively. It was found that the addition of multi-walled carbon nanotubes can significantly improve the electrical conductivity and mechanical properties of the low-density polyethylene composites. Furthermore, the combination of multi-walled carbon nanotubes and phosphorus–nitrogen flame retardant remarkably enhances the flame retardancy of matrixes with an observed decrease of the peak heat release rate and total heat release of 49.8% and 51.9%, respectively. This study provides a new and effective methodology to substantially enhance the electrical conductivity and flame retardancy of polymers with an attractive prospect for polymer applications in electrical equipment.

Cite this article

Yong Luo , Yuhui Xie , Renjie Chen , Ruizhi Zheng , Hua Wu , Xinxin Sheng , Delong Xie , Yi Mei . A low-density polyethylene composite with phosphorus-nitrogen based flame retardant and multi-walled carbon nanotubes for enhanced electrical conductivity and acceptable flame retardancy[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(5) : 1332 -1345 . DOI: 10.1007/s11705-021-2035-0

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21663015, 21908031 and 51603096) and Scientific Research Funds of Yunnan Education Department (Grant No. 2021Y111).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-021-2035-0 and is accessible for authorized users.
1
Ma Z, Chen P, Cheng W, Yan K, Pan L, Shi Y, Yu G. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters, 2018, 18(7): 4570–4575

DOI

2
Wang L, Qiu H, Liang C, Song P, Han Y, Han Y, Gu J, Kong J, Pan D, Guo Z. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon, 2019, 141: 506–514

DOI

3
Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, Gu J. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Composites. Part A, Applied Science and Manufacturing, 2019, 121: 265–272

DOI

4
Sun W J, Xu L, Jia L C, Zhou C G, Xiang Y, Yin R H, Yan D X, Tang J H, Li Z M. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181: 107695

DOI

5
Parchovianský M, Galusek D, Švančárek P, Sedláček J, Šajgalík P. Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceramics International, 2014, 40(9): 14421–14429

DOI

6
Huang J C. Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology, 2002, 21(4): 299–313

DOI

7
Zheng W, Wong S C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 2003, 63(2): 225–235

DOI

8
Kim I H, Jeong Y G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. Journal of Polymer Science. Part B, Polymer Physics, 2010, 48(8): 850–858

DOI

9
Naghdi S, Rhee K Y, Hui D, Park S J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings, 2018, 8(8): 278

DOI

10
Zhao J, Zhang J, Wang L, Lyu S, Gu J. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Composites. Part A, Applied Science and Manufacturing, 2019, 129: 105714

DOI

11
Zhao J, Zhang J, Wang L, Li J, Feng T, Fan J, Chen L, Gu J. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Composites Communications, 2020, 22: 100486

DOI

12
Jyoti J, Basu S, Singh B P, Dhakate S. Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Composites. Part B, Engineering, 2015, 83: 58–65

DOI

13
Jung R, Kim H S, Kim Y, Kwon S M, Lee H S, Jin H J. Electrically conductive transparent papers using multiwalled carbon nanotubes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(12): 1235–1242

DOI

14
Wang L, Qiu J, Sakai E, Wei X. The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites. Part A, Applied Science and Manufacturing, 2016, 89: 18–25

DOI

15
Yan X, Gu J, Zheng G, Guo J, Galaska A M, Yu J, Khan M A, Sun L, Young D P, Zhang Q, Wei S, Guo Z. Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103: 315–327

DOI

16
Gu J, Dang J, Wu Y, Xie C, Han Y. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. Polymer-Plastics Technology and Engineering, 2012, 51(12): 1198–1203

DOI

17
Yang H, Gong J, Wen X, Xue J, Chen Q, Jiang Z, Tian N, Tang T. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites. Composites Science and Technology, 2015, 113: 31–37

DOI

18
Li X, Ou Y, Shi Y. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate. Polymer Degradation & Stability, 2002, 77(3): 383–390

DOI

19
Salmeia K A, Gooneie A, Simonetti P, Nazir R, Kaiser J P, Rippl A, Hirsch C, Lehner S, Rupper P, Hufenus R, Gaan S. Comprehensive study on flame retardant polyesters from phosphorus additives. Polymer Degradation & Stability, 2018, 155: 22–34

DOI

20
Zhao W, Liu J, Peng H, Liao J, Wang X. Synthesis of a novel PEPA-substituted polyphosphoramide with high char residues and its performance as an intumescent flame retardant for epoxy resins. Polymer Degradation & Stability, 2015, 118: 120–129

DOI

21
Luo Y, Xie D, Chen Y, Han T, Chen R, Sheng X, Mei Y. Synergistic effect of ammonium polyphosphate and a-zirconium phosphate in flame-retardant poly (vinyl alcohol) aerogels. Polymer Degradation & Stability, 2019, 170: 109019

DOI

22
Shi Y, Wang G. The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings. Progress in Organic Coatings, 2016, 97: 1–9

DOI

23
Hou Y, Hu W, Liu L, Gui Z, Hu Y. In-situ synthesized CNTs/Bi2Se3 nanocomposites by a facile wet chemical method and its application for enhancing fire safety of epoxy resin. Composites Science and Technology, 2018, 157: 185–194

DOI

24
Scarfato P, Incarnato L, Di Maio L, Dittrich B, Schartel B. Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Composites. Part B, Engineering, 2016, 98: 444–452

DOI

25
McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell S E, Brennan G P, Bein D, Lemoine P, Quinn J P. Polyethylene multiwalled carbon nanotube composites. Polymer, 2005, 46(19): 8222–8232

DOI

26
Divya V, Khan M A, Rao B N, Sailaja R. High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: mechanical, thermal and fire retardancy studies. Materials & Design, 2015, 65: 377–386

DOI

27
Lee S H, Kim M W, Kim S H, Youn J R. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. European Polymer Journal, 2008, 44(6): 1620–1630

DOI

28
Socher R, Krause B, Müller M T, Boldt R, Pötschke P. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer, 2012, 53(2): 495–504

DOI

29
Pan Y, Li L, Chan S H, Zhao J. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites. Part A, Applied Science and Manufacturing, 2010, 41(3): 419–426

DOI

30
Quan H, Zhang S, Qiao J, Zhang L. The electrical properties and crystallization of stereocomplex poly (lactic acid) filled with carbon nanotubes. Polymer, 2012, 53(20): 4547–4552

DOI

31
Ramôa S D, Barra G M, Oliveira R V, de Oliveira M G, Cossa M, Soares B G. Electrical, rheological and electromagnetic interference shielding properties of thermoplastic polyurethane/carbon nanotube composites. Polymer International, 2013, 62(10): 1477–1484

DOI

32
Wu T M, Chen E C. Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology. Composites Science and Technology, 2008, 68(10-11): 2254–2259

DOI

33
Arjmand M, Apperley T, Okoniewski M, Sundararaj U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon, 2012, 50(14): 5126–5134

DOI

34
Mahmoodi M, Arjmand M, Sundararaj U, Park S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon, 2012, 50(4): 1455–1464

DOI

35
Singh A P, Gupta B K, Mishra M, Chandra A, Mathur R, Dhawan S. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon, 2013, 56: 86–96

DOI

36
Zhang D, Kandadai M A, Cech J, Roth S, Curran S A. Poly (L-lactide)(PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. Journal of Physical Chemistry B, 2006, 110(26): 12910–12915

DOI

37
Zhang D, Liu X, Wu G. Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Composites Science and Technology, 2016, 128: 8–16

DOI

38
Schartel B, Hull T R. Development of fire-retarded materials—interpretation of cone calorimeter data. Fire and Materials, 2007, 31(5): 327–354

DOI

39
Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M. Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate)(PBT): flame retardancy performance and mechanisms. Polymer Degradation & Stability, 2011, 96(5): 875–884

DOI

40
Shi Y, Yu B, Zhou K, Yuen R K, Gui Z, Hu Y, Jiang S. Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. Journal of Hazardous Materials, 2015, 293: 87–96

DOI

41
Braun U, Balabanovich A I, Schartel B, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler J K, Altstädt V, Hoffmann T, Pospiech D. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer, 2006, 47(26): 8495–8508

DOI

42
Xing W, Yang W, Yang W, Hu Q, Si J, Lu H, Yang B, Song L, Hu Y, Yuen R K. Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Applied Materials & Interfaces, 2016, 8(39): 26266–26274

DOI

43
Lai X, Tang S, Li H, Zeng X. Flame-retardant mechanism of a novel polymeric intumescent flame retardant containing caged bicyclic phosphate for polypropylene. Polymer Degradation & Stability, 2015, 113: 22–31

DOI

44
Bourbigot S, Le Bras M, Gengembre L, Delobel R. XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Applied Surface Science, 1994, 81(3): 299–307

DOI

45
Xu B R, Deng C, Li Y M, Lu P, Zhao P P, Wang Y Z. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Composites. Part B, Engineering, 2019, 172: 636–648

DOI

46
Bourbigot S, Le Bras M, Delobel R, Gengembre L. XPS study of an intumescent coating: II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Applied Surface Science, 1997, 120(1-2): 15–29

DOI

47
Gu L, Qiu J, Yao Y, Sakai E, Yang L. Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties. Composites Science and Technology, 2018, 161: 39–49

DOI

48
Hu Y, Xu P, Gui H, Wang X, Ding Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Composites. Part A, Applied Science and Manufacturing, 2015, 77: 147–153

DOI

49
Du B, Fang Z. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polymer Degradation & Stability, 2011, 96(10): 1725–1731

DOI

50
Yang R, Ma B, Zhao H, Li J. Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine. Industrial & Engineering Chemistry Research, 2016, 55(18): 5298–5305

DOI

Outlines

/