RESEARCH ARTICLE

Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production

  • Wan N. A. Kadir 1,2 ,
  • Man K. Lam , 1,2 ,
  • Yoshimitsu Uemura 2,3 ,
  • Jun W. Lim 2,4 ,
  • Peck L. Kiew 5 ,
  • Steven Lim 6 ,
  • Siti S. Rosli 2,4 ,
  • Chung Y. Wong 2,4 ,
  • Pau L. Show 7 ,
  • Keat T. Lee 8
Expand
  • 1. Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
  • 2. HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
  • 3. NPO Kuramae Bioenergy, Tokyo 108-0023, Japan
  • 4. Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
  • 5. Faculty of Engineering, Technology & Built Environment, University College Sedaya International, Cheras Kuala Lumpur 56000, Malaysia
  • 6. Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Selangor 43000, Malaysia
  • 7. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia
  • 8. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Malaysia

Received date: 29 Jul 2020

Accepted date: 16 Sep 2020

Published date: 15 Oct 2021

Copyright

2021 Higher Education Press

Abstract

In the present study, ozone was introduced as an alternative approach to harvest and disrupt microalgae cells (Chlorella vulgaris) simultaneously for biodiesel production. At the optimum ozonation conditions (6.14 g·h–1 ozone concentration, 30 min ozonation time, 1 L·min–1 of ozone flowrate at medium pH of 10 and temperature of 30 °C), the sedimentation efficiency of microalgae cells increased significantly from 12.56% to 68.62%. It was observed that the microalgae cells aggregated to form flocs after pre-treated with ozone due to the increment of surface charge from –20 to –6.59 mV. Besides, ozone had successfully disrupted the microalgae cells and resulted in efficient lipid extraction, which was 1.9 times higher than the control sample. The extracted microalgae lipid was mainly consisted of methyl palmitate (C16:0), methyl oleate (C18:1) and methyl linolenate (C18:3), making it suitable for biodiesel production. Finally, utilization of recycled culture media after ozonation pre-treatment showed robust growth of microalgae, in which the biomass yield was maintained in the range of 0.796 to 0.879 g·h–1 for 5 cycles of cultivation.

Cite this article

Wan N. A. Kadir , Man K. Lam , Yoshimitsu Uemura , Jun W. Lim , Peck L. Kiew , Steven Lim , Siti S. Rosli , Chung Y. Wong , Pau L. Show , Keat T. Lee . Simultaneous harvesting and cell disruption of microalgae using ozone bubbles: optimization and characterization study for biodiesel production[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(5) : 1257 -1268 . DOI: 10.1007/s11705-020-2015-9

Acknowledgements

The authors would like to acknowledge the financial support provided by the Ministry of Higher Education (MOHE) Malaysia through Fundamental Research Grant Scheme (FRGS) with cost center Grant No. 0153AB-L25 and Fundamental Research Grant Scheme Malaysia’s Rising Star Awards 2016 (FRGS MRSA 2016) with cost center Grant No. 203/PJKIMIA/6071362. Support from MOHE through HICoE award to CBBR is duly acknowledged (cost centre Grant No. 015MA0-052).
1
Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 269–274

DOI

2
Wigmosta M S, Coleman A M, Skaggs R J, Huesemann M H, Lane L J. National microalgae biofuel production potential and resource demand. Water Resources Research, 2011, 47(30): W00H04

DOI

3
Zittelli G C, Rodolfi L, Biondi N, Tredici M R. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture, 2006, 261(3): 932–943

DOI

4
Danquah M K, Ang L, Uduman N, Moheimani N, Forde G M. Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. Journal of Chemical Technology and Biotechnology, 2009, 84(7): 1078–1083

DOI

5
Grima E M, Belarbi E H, Fernández F A, Medina A R, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003, 20(7-8): 491–515

DOI

6
Salim S, Bosma R, Vermuë M H, Wijffels R H. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 2011, 23(5): 849–855

DOI

7
Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 2013, 31(4): 233–239

DOI

8
Günerken E, d’Hondt E, Eppink M, Garcia Gonzalez L, Elst K, Wijffels R. Cell disruption for microalgae biorefineries. Biotechnology Advances, 2015, 33(2): 243–260

DOI

9
Show K Y, Lee D J, Tay J H, Lee T M, Chang J S. Microalgal drying and cell disruption—recent advances. Bioresource Technology, 2015, 184: 258–266

DOI

10
Wang M, Yuan W, Jiang X, Jing Y, Wang Z. Disruption of microalgal cells using high-frequency focused ultrasound. Bioresource Technology, 2014, 153: 315–321

DOI

11
Vilkhu K, Mawson R, Simons L, Bates D. Applications and opportunities for ultrasound assisted extraction in the food industry: a review. Innovative Food Science & Emerging Technologies, 2008, 9(2): 161–169

DOI

12
Xu P, Janex M L, Savoye P, Cockx A, Lazarova V. Wastewater disinfection by ozone: main parameters for process design. Water Research, 2002, 36(4): 1043–1055

DOI

13
Margot J, Kienle C, Magnet A, Weil M, Rossi L, De Alencastro L F, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry D A. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Science of the Total Environment, 2013, 461-462: 480–498

DOI

14
Kadir W N A, Lam M K, Uemura Y, Lim J W, Lee K T. Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy Conversion and Management, 2018, 171: 1416–1429

DOI

15
Oliveira G A, Carissimi E, Monje Ramírez I, Velasquez Orta S B, Rodrigues R T, Ledesma M T O. Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresource Technology, 2018, 259: 334–342

DOI

16
Lam M K, Lee K T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 2012, 94: 303–308

DOI

17
Kadir W N A, Lam M K, Uemura Y, Lim J W, Lee K T. Harvesting and pre-treatment of microalgae biomass via ozonation for lipid extraction: a preliminary study. In: Proceedings of the 3rd International Conference on Applied Science and Technology (ICAST’18). Maryland: AIP Publishing LLC, 2018, 020064

18
Tan X B, Lam M K, Uemura Y, Lim J W, Wong C Y, Ramli A, Kiew P L, Lee K T. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: growth optimization study and fatty acid composition analysis. Energy Conversion and Management, 2018, 164: 363–373

DOI

19
Bader H, Hoigné J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4): 449–456

DOI

20
Kamaroddin M F, Hanotu J, Gilmour D J, Zimmerman W B. In-situ disinfection and a new downstream processing scheme from algal harvesting to lipid extraction using ozone-rich microbubbles for biofuel production. Algal Research, 2016, 17: 217–226

DOI

21
Dasan Y K, Lam M K, Yusup S, Lim J W, Show P L, Tan I S, Lee K T. Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: a stress-inducing strategy for lipid accumulation and carbon dioxide fixation. Journal of CO2 Utilization, 2020, 41: 101226

22
Rosli S S, Lim J W, Jumbri K, Lam M K, Uemura Y, Ho C D, Tan W N, Cheng C K, Kadir W N A. Modeling to enhance attached microalgal biomass growth onto fluidized beds packed in nutrients-rich wastewater whilst simultaneously biofixing CO2 into lipid for biodiesel production. Energy Conversion and Management, 2019, 185: 1–10

DOI

23
Sudhakar K, Premalatha M. Characterization of micro algal biomass through FTIR/TGA/CHN analysis: application to Scenedesmus sp. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2015, 37(21): 2330–2337

DOI

24
Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 2016, 34(7): 1225–1244

DOI

25
Jekel M R. Flocculation effects of ozone. Ozone Science and Engineering, 1994, 16(1): 55–66

DOI

26
Cheng Y L, Juang Y C, Liao G Y, Ho S H, Yeh K L, Chen C Y, Chang J S, Liu J C, Lee D J. Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 2010, 101(23): 9092–9096

DOI

27
Cardeña R, Moreno G, Bakonyi P, Buitrón G. Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chemical Engineering Journal, 2017, 307: 948–954

DOI

28
Gordetsov A S, Peretyagin S P, Kadomtseva A V, Novikova A N, Grechkaneva O V, Zimina S V. Reactive oxygen species of ozonolysis products of some unsaturated organic compounds. Sovremennye Tehnologii v. Medicine, 2019, 11(3): 60–64

29
Tsang Y H, Koh Y H, Koch D L. Bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence. Journal of Colloid and Interface Science, 2004, 275(1): 290–297

DOI

30
Oliveira G A, Monje Ramirez I, Carissimi E, Rodrigues R T, Velasquez Orta S B, Mejía A C C, Ledesma M T O. The effect of bubble size distribution on the release of microalgae proteins by ozone-flotation. Separation and Purification Technology, 2019, 211: 340–347

DOI

31
Branyikova I, Prochazkova G, Potocar T, Jezkova Z, Branyik T. Harvesting of microalgae by flocculation. Fermentation, 2018, 4(4): 93

DOI

32
Smith B T, Davis R H. Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Research, 2012, 1(1): 32–39

DOI

33
Maji G, Choudhury S, Hamid S, Prashanth R, Sibi G. Microalgae harvesting via flocculation: impact of pH, algae species and biomass concentration. Methods of Microbiology and Molecular Biology, 2018, 1(2): 106

34
Pan Y, Shi B, Zhang Y. Research on flocculation property of bioflocculant PG. a21 Ca. Modern Applied Science, 2009, 3(6): 106–112

DOI

35
Hammes F, Meylan S, Salhi E, Köster O, Egli T, Von Gunten U. Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research, 2007, 41(7): 1447–1454

DOI

36
Lai Y H, Md Azmi F H, Fatehah N A, Puspanadan S, Lee C K. Efficiency of chitosan and eggshell on harvesting of Spirulina sp. in a bioflocculation process. Malaysian Journal of Microbiology, 2019, 15(3): 188–194

37
Vandamme D. Flocculation based harvesting processes for microalgae biomass production. Dissertation for the Doctoral Degree. Leuven: Katholieke Universiteit Leuven, 2013, 21–24

38
Low Y, Lau S W. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. In: 29th Symposium of Malaysian Chemical Engineers, SOMChE 2016. Bristol: Institute of Physics Publishing, 2017, 012073

39
Khoo C G, Woo M H, Yury N, Lam M K, Lee K T. Dual role of Chlorella vulgaris in wastewater treatment for biodiesel production: growth optimization and nutrients removal study. Journal of the Japan Institute of Energy, 2017, 96(8): 290–299

DOI

40
Huang Y, Hong A, Zhang D, Li L. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris. Environmental Technology, 2014, 35(8): 931–937

DOI

41
Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 2010, 14(1): 217–232

DOI

42
Alexandre A P S, Castanha N, Costa N S, Santos A S, Badiale Furlong E, Augusto P E D, Calori Domingues M A. Ozone technology to reduce zearalenone contamination in whole maize flour: degradation kinetics and impact on quality. Journal of the Science of Food and Agriculture, 2019, 99(15): 6814–6821

DOI

43
Amri Z, Ben H S, Dbeibia A, Ghorbel A, Mahdhi A, Znati M, Ambat I, Haapaniemi E, Sillanpää M, Hammami M. Physico-chemical characterization and antibacterial activity of ozonated pomegranate seeds oil. Ozone Science and Engineering, 2020, 42(6): 1–8

DOI

44
Lee J Y, Yoo C, Jun S Y, Ahn C Y, Oh H M. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 2010, 101(1): 75–77

DOI

45
Ahmad A, Yasin N M, Derek C, Lim J. Kinetic studies and thermodynamics of oil extraction and transesterification of Chlorella sp. for biodiesel production. Environmental Technology, 2014, 35(7): 891–897

DOI

46
Farooq W, Suh W I, Park M S, Yang J W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technology, 2015, 184: 73–81

DOI

47
Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 2011, 102(1): 159–165

DOI

Outlines

/