REVIEW ARTICLE

The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review

  • Hiep Thuan Lu , 1,2,3 ,
  • Wen Li 1 ,
  • Ehsan Soroodan Miandoab 1 ,
  • Shinji Kanehashi 4 ,
  • Guoping Hu , 1,5
Expand
  • 1. Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • 2. Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
  • 3. Australian Research Council (ARC) Research Hub for Medicinal Agriculture, La Trobe University, Bundoora, VIC 3086, Australia
  • 4. Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
  • 5. Fluid Science & Resources Division, Department of Chemical Engineering, the University of Western Australia, Crawley, WA 6009, Australia

Received date: 18 Apr 2020

Accepted date: 05 Jul 2020

Published date: 15 Jun 2021

Copyright

2020 Higher Education Press

Abstract

The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.

Cite this article

Hiep Thuan Lu , Wen Li , Ehsan Soroodan Miandoab , Shinji Kanehashi , Guoping Hu . The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 464 -482 . DOI: 10.1007/s11705-020-1983-0

Acknowledgements

The authors acknowledge the support of Early Career Researcher Grants Scheme awarded by the University of Melbourne entitled ‘Production of High Purity Hydrogen from Mixed Pipeline Gases’ and Future Fuel Cooperative Research Centre (CRC) ‘Novel Separation Technology development for hydrogen and future fuels systems’.
1
BP. BP Energy Outlook: 2019 edition. 2019

2
International Energy Agency. World Energy Outlook 2013. Flagship report. 2013

3
International Energy Agency. Oil 2020. Fuel Report. 2020

4
United Nations. Paris Agreement—United Nations Framework Convention on Climate Change. 2015

5
Pour N, Webley P A, Cook P J. Opportunities for application of BECCS in the Australian power sector. Applied Energy, 2018, 224: 615–635

DOI

6
Kemper J. Biomass and carbon dioxide capture and storage: a review. International Journal of Greenhouse Gas Control, 2015, 40: 401–430

DOI

7
Rubin E, Meyer L, Coninck H D, Abanades J C, Akai M, Benson S, Caldeira K, Cook P, Davidson O, Doctor R, IPCC special report on carbon dioxide capture and storage. Carbon Dioxide Capture and Storage. 2005

8
Global CCS Institute. The Global Status of CCS. 2017

9
Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy, 2012, 37(2): 1184–1203

DOI

10
Mohn K. The gravity of status quo: a review of IEA’s world energy outlook. Economics of Energy & Environmental Policy, 2020, 9(1), DOI: 10.5547/2160-5890.8.2.kmoh

11
International Energy Agency. Market Report Series: Renewables 2018: Analysis and Forecasts to 2023. 2018

12
Pecher A, Kofoed J P. Handbook of Ocean Wave Energy. London: Springer Nature, 2017, 20

13
International Energy Agency. Global Energy & CO2 Status Report 2019. Flagship Report. 2019

14
Robinius M, Raje T, Nykamp S, Rott T, Müller M, Grube T, Katzenbach B, Küppers S, Stolten D. Power-to-gas: electrolyzers as an alternative to network expansion—an example from a distribution system operator. Applied Energy, 2018, 210: 182–197

DOI

15
Maroufmashat A, Fowler M. Transition of future energy system infrastructure through power-to-gas pathways. Energies, 2017, 10(8): 1089

DOI

16
Kreuter W, Hofmann H. Electrolysis: the important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy, 1998, 23(8): 661–666

DOI

17
Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2011, 100(2): 410–426

DOI

18
Laguna Bercero M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4–16

DOI

19
Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T. Renewable power-to-gas: a technological and economic review. Renewable Energy, 2016, 85: 1371–1390

DOI

20
Ehteshami S M M, Chan S H. The role of hydrogen and fuel cells to store renewable energy in the future energy network—potentials and challenges. Energy Policy, 2014, 73: 103–109

DOI

21
International Energy Agency. The Future of Hydrogen. Technology Report. 2019

22
Sato S, Nagai K. Polymer membranes with hydrogen-selective and hydrogen-rejective properties. Membrane, 2005, 30(1): 20–28

DOI

23
Liemberger W, Groß M, Miltner M, Harasek M. Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas. Journal of Cleaner Production, 2017, 167: 896–907

DOI

24
Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 2013, 38(5): 2039–2061

DOI

25
Sinigaglia T, Lewiski F, Santos Martins M E, Mairesse Siluk J C. Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review. International Journal of Hydrogen Energy, 2017, 42(39): 24597–24611

DOI

26
Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 2018, 43(22): 10420–10430

DOI

27
Saadi F H, Lewis N S, McFarland E W. Relative costs of transporting electrical and chemical energy. Energy & Environmental Science, 2018, 11(3): 469–475

DOI

28
van der Zwaan B C C, Schoots K, Rivera Tinoco R, Verbong G P J. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation. Applied Energy, 2011, 88(11): 3821–3831

DOI

29
Dodds P E, Staffell I, Hawkes A D, Li F, Grünewald P, McDowall W, Ekins P. Hydrogen and fuel cell technologies for heating: a review. International Journal of Hydrogen Energy, 2015, 40(5): 2065–2083

DOI

30
Melaina M W, Antonia O, Penev M. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues. Technical Report NREL/TP-5600-51995. 2013

31
SNAM. Global Gas Report 2018. Washington D.C.: International Gas Union, 2018

32
Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy, 2007, 32(2): 268–286

DOI

33
Schmura E, Klingenberg M, Paster M, Gruber J. Existing Natural Gas Pipeline Materials and Associated Operational Characteristics. DOE Hydrogen Program-FY 2005 Progress Report. 2005

34
Al Rafea K. Utilizing ‘power-to-gas’ technology for storing energy and to optimize the synergy between environmental obligations and economical requirements. Dissertation for the Doctoral Degree. Ontario: University of Waterloo, 2017, 13

35
Altfeld K, Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas Energy, 2013, 2103(03): 1–2

36
Penev M, Melaina M, Bush B, Muratori M, Warner E, Chen Y. Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California. Technical Report NREL/TP-6A50-66538. 2016

37
Jemena Gas Networks (NSW) Limited. Western Sydney Green Gas Project-Environmental Impact Statement. 2019

38
Karim G A, Wierzba I, Al Alousi Y. Methane-hydrogen mixtures as fuels. International Journal of Hydrogen Energy, 1996, 21(7): 625–631

DOI

39
Todd D M. Gas turbine improvements enhance IGCC viability. In: Proceedings of the 2000 Gasification Technologies Conference. Schenectady, NY: GE Power Systems, 2000, 8–11

40
Adhikari S, Fernando S. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research, 2006, 45(3): 875–881

DOI

41
Lu H T. The impact of impurities on the performance of cellulose triacetate membranes for CO2 separation. Dissertation for the Doctoral Degree. Parkville: The University of Melbourne, 2018, 3–47

42
Baker R W. Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393–1411

DOI

43
Ghosal K, Freeman B D. Gas separation using polymer membranes: an overview. Polymers for Advanced Technologies, 1994, 5(11): 673–697

DOI

44
Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139

DOI

45
Kentish S E, Scholes C A, Stevens G W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, 2008, 1(1): 52–66

DOI

46
Chen G, Buck F, Kistner I, Widenmeyer M, Schiestel T, Schulz A, Walker M, Weidenkaff A. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699

DOI

47
Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027

DOI

48
Barelli L, Bidini G, Gallorini F, Servili S. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy, 2008, 33(4): 554–570

DOI

49
Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168

DOI

50
Zornoza B, Casado C, Navajas A. Chapter 11 Advances in Hydrogen Separation and Purification with Membrane Technology. Amsterdam: Elsevier, 2013, 245–268

51
Ockwig N W, Nenoff T M. Membranes for hydrogen separation. Chemical Reviews, 2007, 107(10): 4078–4110

DOI

52
Koros W J, Fleming G. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80

DOI

53
Hu G, Jiang K, Wang R, Li G. Chapter 7. Technological assessment of CO2 capture and EOR/EGR/ECBM-based storage. In Cheung F M, Hong Y, eds. Green Finance, Sustainable Development, and the Belt and Road Initiative. London: Taylor & Francis, 2021, ISBN: 9780367898809

54
Uhlhorn R, Keizer K, Burggraaf A. Gas and surface diffusion in modified g-alumina systems. Journal of Membrane Science, 1989, 46(2-3): 225–241

DOI

55
Paul D. 1.04-Fundamentals of Transport Phenomena in Polymer Membranes. In Drioli E, Giorno L, eds. Comprehensive Membrane Science and Engineering. Oxford: Elsevier, 2010, 75–90

56
Boutilier M S, Sun C, O’Hern S C, Au H, Hadjiconstantinou N G, Karnik R. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano, 2014, 8(1): 841–849

DOI

57
Lin H, Freeman B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 2004, 239(1): 105–117

DOI

58
Roa F, Way J D. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladiumcopper membranes. Industrial & Engineering Chemistry Research, 2003, 42(23): 5827–5835

DOI

59
Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121

DOI

60
Lu G, Da Costa J D, Duke M, Giessler S, Socolow R, Williams R, Kreutz T. Inorganic membranes for hydrogen production and purification: a critical review and perspective. Journal of Colloid and Interface Science, 2007, 314(2): 589–603

DOI

61
Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: a review. Journal of Membrane Science, 2011, 375(1-2): 28–45

DOI

62
Kamakoti P, Morreale B D, Ciocco M V, Howard B H, Killmeyer R P, Cugini A V, Sholl D S. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science, 2005, 307(5709): 569–573

DOI

63
O’Brien C P, Howard B H, Miller J B, Morreale B D, Gellman A J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. Journal of Membrane Science, 2010, 349(1-2): 380–384

DOI

64
Kuraoka K, Zhao H, Yazawa T. Pore-filled palladium-glass composite membranes for hydrogen separation by novel electroless plating technique. Journal of Materials Science, 2004, 39(5): 1879–1881

DOI

65
Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity. Catalysis Today, 2005, 104(2-4): 231–237

DOI

66
Burggraaf A J. Important Characteristics of Inorganic Membranes. Amsterdam: Elsevier, 1996, 21–34

67
Collins J P, Way J D. Hydrogen selective membrane. US Patent, 5652020, 1997-07-29

68
Yan S, Maeda H, Kusakabe K, Morooka S. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Industrial & Engineering Chemistry Research, 1994, 33(3): 616–622

DOI

69
Yun S, Ko J H, Oyama S T. Ultrathin palladium membranes prepared by a novel electric field assisted activation. Journal of Membrane Science, 2011, 369(1-2): 482–489

DOI

70
Tong J, Shirai R, Kashima Y, Matsumura Y. Preparation of a pinhole-free PdAg membrane on a porous metal support for pure hydrogen separation. Journal of Membrane Science, 2005, 260(1-2): 84–89

DOI

71
Shi Z, Wu S, Szpunar J A, Roshd M. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, 2006, 280(1-2): 705–711

DOI

72
Okazaki J, Tanaka D A P, Tanco M A L, Wakui Y, Mizukami F, Suzuki T M. Hydrogen permeability study of the thin PdAg alloy membranes in the temperature range across the αβ phase transition. Journal of Membrane Science, 2006, 282(1-2): 370–374

DOI

73
Harris J R. Coated diffusion membrane and its use. US Patent, 4536196, 1985-08-20

74
Peters T A, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. Journal of Membrane Science, 2011, 383(1-2): 124–134

DOI

75
Peters T A, Kaleta T, Stange M, Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catalysis Today, 2012, 193(1): 8–19

DOI

76
Nair B K R, Choi J, Harold M P. Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science, 2007, 288(1-2): 67–84

DOI

77
Gade S K, Thoen P M, Way J D. Unsupported palladium alloy foil membranes fabricated by electroless plating. Journal of Membrane Science, 2008, 316(1-2): 112–118

DOI

78
Sanz R, Calles J A, Alique D, Furones L, Ordóñez S, Marín P, Corengia P, Fernandez E. Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. International Journal of Hydrogen Energy, 2011, 36(24): 15783–15793

DOI

79
Roa F, Block M J, Way J D. The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination, 2002, 147(1-3): 411–416

DOI

80
Lukyanov B N, Andreev D V, Parmon V N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, 154(1-3): 258–266

DOI

81
Emerson S, Magdefrau N, She Y, Thibaud Erkey C. Advanced Palladium Membrane Scale-up for Hydrogen Separation. Technical Report DEFE0004967. 2012

82
De Falco M, Iaquaniello G, Palo E, Cucchiella B, Palma V, Ciambelli P. Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor. In: Handbook of Membrane Reactors. Cambridge: Woodhead Publishing, 2013, 456–486

83
Rosensteel W A, Ricote S, Sullivan N P. Hydrogen permeation through dense BaCe0.8Y0.2O3dCe0.8Y0.2O2d composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 2016, 41(4): 2598–2606

DOI

84
Elangovan S, Nair B, Small T, Heck B, Bay I, Timper M, Hartvigsen J, Wilson M. Ceramic membrane devices for ultra-high purity hydrogen production: mixed conducting membrane development. New York: Springer, 2009, 67–81

85
Phair J, Badwal S. Review of proton conductors for hydrogen separation. Ionics, 2006, 12(2): 103–115

DOI

86
Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J. A review of advanced proton-conducting materials for hydrogen separation. Progress in Materials Science, 2015, 74: 1–50

DOI

87
Fontaine M L, Norby T, Larring Y, Grande T, Bredesen R. Oxygen and hydrogen separation membranes based on dense ceramic conductors. Membrane Science and Technology, 2008, 13: 401–458

DOI

88
Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E, Silva C M. Inorganic membranes for hydrogen separation. Separation and Purification Reviews, 2018, 47(3): 229–266

DOI

89
Lundin S T B, Patki N S, Fuerst T F, Ricote S, Wolden C A, Way J D. Dense Inorganic Membranes for Hydrogen Separation. New Jersey: World Scientific Publishing, 2017

90
Meulenberg W, Ivanova M, Serra J, Roitsch S. Proton-Conducting Ceramic Membranes for Solid Oxide Fuel Cells and Hydrogen (H2) Processing. Amsterdam: Elsevier, 2011, 541–567

91
Tan X, Tan X, Yang N, Meng B, Zhang K, Liu S. High performance BaCe0.8Y0.2O3–α (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 2014, 40(2): 3131–3138

DOI

92
Hung I M, Chiang Y J, Jang J S C, Lin J C, Lee S W, Chang J K, Hsi C S. The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3–d ceramic separation membrane. Journal of the European Ceramic Society, 2015, 35(1): 163–170

DOI

93
Mather G C, Poulidi D, Thursfield A, Pascual M J, Jurado J R, Metcalfe I S. Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: thermal, ageing and surface-modification effects. Solid State Ionics, 2010, 181(3-4): 230–235

DOI

94
Omata T, Otsuka Yao Matsuo S. Infrared absorption spectra of high temperature proton conducting Ca2+-doped La2Zr2O7. Journal of the Electrochemical Society, 2001, 148(12): 475–482

DOI

95
Hamakawa S, Li L, Li A, Iglesia E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3–α thin films. Solid State Ionics, 2002, 148(1-2): 71–81

DOI

96
Tong J, Su L, Haraya K, Suda H. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process. Chemical Communications, 2006, (10): 1142–1144

DOI

97
Escolástico S, Somacescu S, Serra J M. Tailoring mixed ionicelectronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−d. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(2): 719–731

DOI

98
Chen Y, Cheng S, Chen L, Wei Y, Ashman P J, Wang H. Niobium and molybdenum co-doped La5.5WO11.25−d membrane with improved hydrogen permeability. Journal of Membrane Science, 2016, 510: 155–163

DOI

99
Zhu Z, Sun W, Wang Z, Cao J, Dong Y, Liu W. A high stability NiLa0.5Ce0.5O2−d asymmetrical metalceramic membrane for hydrogen separation and generation. Journal of Power Sources, 2015, 281: 417–424

DOI

100
Balachandran U, Lee T, Chen L, Song S, Picciolo J, Dorris S. Hydrogen separation by dense cermet membranes. Fuel, 2006, 85(2): 150–155

DOI

101
Meng X, Song J, Yang N, Meng B, Tan X, Ma Z F, Li K. NiBaCe0.95Tb0.05O3−d cermet membranes for hydrogen permeation. Journal of Membrane Science, 2012, 401: 300–305

DOI

102
Rebollo E, Mortalò C, Escolástico S, Boldrini S, Barison S, Serra J M, Fabrizio M. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−d and Y-or Gd-doped ceria. Energy & Environmental Science, 2015, 8(1-2): 3675–3686

DOI

103
Chiu W V, Park I S, Shqau K, White J C, Schillo M C, Ho W S W, Dutta P K, Verweij H. Post-synthesis defect abatement of inorganic membranes for gas separation. Journal of Membrane Science, 2011, 377(1): 182–190

DOI

104
Xu S, Zhang X, Cheng D, Chen F, Ren X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

DOI

105
Ye Z, Zhang H, Zhang Y, Tang Y. Seedinduced synthesis of functional MFI zeolite materials: method development, crystallization mechanisms and catalytic properties. Frontiers of Chemical Science and Engineering, 2019: 1–16

106
Huang A, Wang N, Caro J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous and Mesoporous Materials, 2012, 164: 294–301

DOI

107
Huang A, Wang N, Caro J. Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. Journal of Membrane Science, 2012, 389: 272–279

DOI

108
Tang Z, Dong J, Nenoff‚T M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir, 2009, 25(9): 4848–4852

DOI

109
Shafie A H, An W, Hosseinzadeh Hejazi S A, Sawada J A, Kuznicki S M. Natural zeolite-based cement composite membranes for H2/CO2 separation. Separation and Purification Technology, 2012, 88: 24–28

DOI

110
Prabhu A K, Oyama S T. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. Journal of Membrane Science, 2000, 176(2): 233–248

DOI

111
Tsuru T. Development of metal-doped silica membranes for increased hydrothermal stability and their applications to membrane reactors for steam reforming of methane. Journal of the Japan Petroleum Institute, 2011, 54(5): 277–286

DOI

112
Fan J, Ohya H, Suga T, Ohashi H, Yamashita K, Tsuchiya S, Aihara M, Takeuchi T, Negishi Y. High flux zirconia composite membrane for hydrogen separation at elevated temperature. Journal of Membrane Science, 2000, 170(1): 113–125

DOI

113
Koresh J E, Soffer A. The carbon molecular sieve membranes: general properties and the permeability of CH4/H2 mixture. Separation Science and Technology, 1987, 22(2-3): 973–982

DOI

114
Vieira-Linhares A M, Seaton N A. Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane. Chemical Engineering Science, 2003, 58(18): 4129–4136

DOI

115
Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation: a review. Carbon, 2004, 42(2): 241–259

DOI

116
Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9(12): 4019–4024

DOI

117
Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155

DOI

118
Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103

DOI

119
Liu Y, Wang N, Caro J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(16): 5716–5723

DOI

120
Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586

DOI

121
Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21(20): 4920–4924

DOI

122
Huang A, Dou W, Caro J R. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564

DOI

123
Zhang F, Zou X, Gao X, Fan S, Sun F, Ren H, Zhu G. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability. Advanced Functional Materials, 2012, 22(17): 3583–3590

DOI

124
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75

DOI

125
Sutrisna P D, Savitri E, Himma N F, Prasetya N, Wenten I G. Current perspectives and mini review on zeolitic imidazolate framework-8 (ZIF-8) membranes on organic substrates. IOP Conference Series. Materials Science and Engineering, 2019, 703(1): 012045

DOI

126
Dong J, Lin Y, Liu W. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AIChE Journal, 2000, 46(10): 1957–1966

DOI

127
Poshusta J C, Tuan V A, Falconer J L, Noble R D. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 3924–3929

DOI

128
Liu B S, Au C T. A La2NiO4-zeolite membrane reactor for the CO2 reforming of methane to syngas. Catalysis Letters, 2001, 77(1-3): 67–74

DOI

129
Lee D, Zhang L, Oyama S, Niu S, Saraf R F. Synthesis, characterization and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. Journal of Membrane Science, 2004, 231(1-2): 117–126

DOI

130
Moon J H, Bae J H, Bae Y S, Chung J T, Lee C H. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science, 2008, 318(1-2): 45–55

DOI

131
Gu Y, Oyama S T. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols. Journal of Membrane Science, 2007, 306(1-2): 216–227

DOI

132
Jones C W, Koros W J. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 1994, 32(8): 1419–1425

DOI

133
Petersen J, Matsuda M, Haraya K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science, 1997, 131(1-2): 85–94

DOI

134
Wei W, Hu H, You L, Chen G. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon, 2002, 40(3): 465–467

DOI

135
Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997, 134(2): 245–253

DOI

136
Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. Journal of Membrane Science, 1999, 160(2): 179–186

DOI

137
Kita H, Yoshino M, Tanaka K, Okamoto K. Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications, 1997, (11): 1051–1052

DOI

138
Guo H, Zhu G, Hewitt I J, Qiu S. “Twin copper source” growth of metalorganic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647

DOI

139
Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J R. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001

DOI

140
Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chemical Communications, 2012, 48(89): 10981–10983

DOI

141
Lee D J, Li Q, Kim H, Lee K. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012, 163: 169–177

DOI

142
Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761

DOI

143
Ekiner O, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation—spinning and properties. Journal of Membrane Science, 1990, 53(3): 259–273

DOI

144
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

DOI

145
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400

DOI

146
Esposito E, Mazzei I, Monteleone M, Fuoco A, Carta M, McKeown N, Malpass Evans R, Jansen J. Highly permeable matrimid®/PIM-EA (H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46

DOI

147
McKeown N B, Budd P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35(8): 675–683

DOI

148
Li F Y, Xiao Y, Chung T S, Kawi S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules, 2012, 45(3): 1427–1437

DOI

149
Kim S, Lee Y M. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43: 1–32

DOI

150
Park H B, Jung C H, Lee Y M, Hill A J, Pas S J, Mudie S T, Van Wagner E, Freeman B D, Cookson D J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258

DOI

151
Han S H, Lee J E, Lee K J, Park H B, Lee Y M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357(1-2): 143–151

DOI

152
Han S H, Misdan N, Kim S, Doherty C M, Hill A J, Lee Y M. Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules, 2010, 43(18): 7657–7667

DOI

153
Yeong Y F, Wang H, Pallathadka Pramoda K, Chung T S. Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397: 51–65

DOI

154
Zornoza B, Téllez C, Coronas J, Esekhile O, Koros W J. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE Journal, 2015, 61(12): 4481–4490

DOI

155
Safak Boroglu M, Yumru A B. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology, 2017, 173: 269–279

DOI

156
Kim E, Kim H, Kim D, Kim J, Lee P. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation. Crystals, 2019, 9(1): 15

DOI

157
Weng T H, Tseng H H, Wey M Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. International Journal of Hydrogen Energy, 2009, 34(20): 8707–8715

DOI

158
Xie K, Fu Q, Xu C, Lu H, Zhao Q, Curtain R, Gu D, Webley P A, Qiao G G. Continuous assembly of a polymer on a metalorganic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy & Environmental Science, 2018, 11(3): 544–550

DOI

159
Hu G, Chen C, Lu H T, Wu Y, Liu C, Tao L, Men Y, He G, Li G. A review of technical advances, barriers and solutions in the power to gas (P2G) roadmap. Engineering, 2020, (in press)

160
APA Group. Gas Specification for Roma-Brisbane Pipeline. 2010

161
De Wild P, Nyqvist R, De Bruijn F, Stobbe E. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. Journal of Power Sources, 2006, 159(2): 995–1004

DOI

162
Golebiowska M, Roth M, Firlej L, Kuchta B, Wexler C. The reversibility of the adsorption of methanemethyl mercaptan mixtures in nanoporous carbon. Carbon, 2012, 50(1): 225–234

DOI

163
Farrauto R J. Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen. Applied Catalysis B: Environmental, 2005, 56(1-2): 3–7

DOI

164
Peters T A, Stange M, Veenstra P, Nijmeijer A, Bredesen R. The performance of PdAg alloy membrane films under exposure to trace amounts of H2S. Journal of Membrane Science, 2016, 499: 105–115

DOI

165
De Nooijer N, Sanchez J D, Melendez J, Fernandez E, Pacheco Tanaka D A, Van Sint Annaland M, Gallucci F. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. International Journal of Hydrogen Energy, 2020, 45(12): 7303–7312

DOI

166
Fotou G, Lin Y, Pratsinis S E. Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science, 1995, 30(11): 2803–2808

DOI

167
Uhlmann D, Smart S, Diniz Da Costa J C H. 2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science, 2011, 380(1-2): 48–54

DOI

168
de Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation. Journal of Membrane Science, 1999, 158(1-2): 277–288

DOI

169
Wei Q, Ding Y L, Nie Z R, Liu X G, Li Q Y. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. Journal of Membrane Science, 2014, 466: 114–122

DOI

170
Glass R W, Ross R A. Surface studies of the adsorption of sulfur-containing gases at 423.deg.K on porus adsorbents. II. Adsorption of hydrogen sulfide, methanethiol, ethanethiol and dimethyl sulfide on gamma.-alumina. Journal of Physical Chemistry, 1973, 77(21): 2576–2578

DOI

171
Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao S. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane. Journal of Membrane Science, 2008, 325(1): 16–19

DOI

172
Schell W, Wensley C, Chen M, Venugopal K, Miller B, Stuart J. Recent advances in cellulosic membranes for gas separation and pervaporation. Gas Separation & Purification, 1989, 3(4): 162–169

DOI

173
Lu H, Kanehashi S, Scholes C, Kentish S. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. Journal of Membrane Science, 2017, 539: 432–440

DOI

174
Plaisance C P, Dooley K M. Zeolite and metal oxide catalysts for the production of dimethyl sulfide and methanethiol. Catalysis Letters, 2009, 128(3-4): 449–458

DOI

175
Walker S B, Mukherjee U, Fowler M, Elkamel A. Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. International Journal of Hydrogen Energy, 2016, 41(19): 7717–7731

DOI

176
Lubitz W, Tumas W. Hydrogen: an overview. Chemical Reviews, 2007, 107(10): 3900–3903

DOI

177
Iulianelli A, Drioli E. Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206: 106464

DOI

178
Coker D, Freeman B, Fleming G. Modeling multicomponent gas separation using hollowfiber membrane contactors. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(6): 1289–1302

DOI

179
Kundu P K, Chakma A, Feng X. Simulation of binary gas separation with asymmetric hollow fibre membranes and case studies of air separation. Canadian Journal of Chemical Engineering, 2012, 90(5): 1253–1268

DOI

180
Soroodan Miandoab E, Kentish S E, Scholes C A. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study. Journal of Membrane Science, 2020, 595: 117470

DOI

181
Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183

DOI

182
Basile A, Dalena F, Tong J, Veziroğlu T N. Hydrogen Production, Separation and Purification for Energy. London: The Insititution of Engineering and Technology, 2017

183
Liemberger W, Halmschlager D, Miltner M, Harasek M. Efficient extraction of hydrogen transported as co-stream in the natural gas grid—the importance of process design. Applied Energy, 2019, 233-234: 747–763

DOI

Outlines

/