Frontiers of Chemical Science and Engineering >
The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review
Received date: 18 Apr 2020
Accepted date: 05 Jul 2020
Published date: 15 Jun 2021
Copyright
The global energy market is in a transition towards low carbon fuel systems to ensure the sustainable development of our society and economy. This can be achieved by converting the surplus renewable energy into hydrogen gas. The injection of hydrogen (≤10% v/v) in the existing natural gas pipelines is demonstrated to have negligible effects on the pipelines and is a promising solution for hydrogen transportation and storage if the end-user purification technologies for hydrogen recovery from hydrogen enriched natural gas (HENG) are in place. In this review, promising membrane technologies for hydrogen separation is revisited and presented. Dense metallic membranes are highlighted with the ability of producing 99.9999999% (v/v) purity hydrogen product. However, high operating temperature (≥300 °C) incurs high energy penalty, thus, limits its application to hydrogen purification in the power to hydrogen roadmap. Polymeric membranes are a promising candidate for hydrogen separation with its commercial readiness. However, further investigation in the enhancement of H2/CH4 selectivity is crucial to improve the separation performance. The potential impacts of impurities in HENG on membrane performance are also discussed. The research and development outlook are presented, highlighting the essence of upscaling the membrane separation processes and the integration of membrane technology with pressure swing adsorption technology.
Key words: power to hydrogen; membrane technology; hydrogen; energy
Hiep Thuan Lu , Wen Li , Ehsan Soroodan Miandoab , Shinji Kanehashi , Guoping Hu . The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 464 -482 . DOI: 10.1007/s11705-020-1983-0
1 |
BP. BP Energy Outlook: 2019 edition. 2019
|
2 |
International Energy Agency. World Energy Outlook 2013. Flagship report. 2013
|
3 |
International Energy Agency. Oil 2020. Fuel Report. 2020
|
4 |
United Nations. Paris Agreement—United Nations Framework Convention on Climate Change. 2015
|
5 |
Pour N, Webley P A, Cook P J. Opportunities for application of BECCS in the Australian power sector. Applied Energy, 2018, 224: 615–635
|
6 |
Kemper J. Biomass and carbon dioxide capture and storage: a review. International Journal of Greenhouse Gas Control, 2015, 40: 401–430
|
7 |
Rubin E, Meyer L, Coninck H D, Abanades J C, Akai M, Benson S, Caldeira K, Cook P, Davidson O, Doctor R,
|
8 |
Global CCS Institute. The Global Status of CCS. 2017
|
9 |
Andrews J, Shabani B. Re-envisioning the role of hydrogen in a sustainable energy economy. International Journal of Hydrogen Energy, 2012, 37(2): 1184–1203
|
10 |
Mohn K. The gravity of status quo: a review of IEA’s world energy outlook. Economics of Energy & Environmental Policy, 2020, 9(1), DOI: 10.5547/2160-5890.8.2.kmoh
|
11 |
International Energy Agency. Market Report Series: Renewables 2018: Analysis and Forecasts to 2023. 2018
|
12 |
Pecher A, Kofoed J P. Handbook of Ocean Wave Energy. London: Springer Nature, 2017, 20
|
13 |
International Energy Agency. Global Energy & CO2 Status Report 2019. Flagship Report. 2019
|
14 |
Robinius M, Raje T, Nykamp S, Rott T, Müller M, Grube T, Katzenbach B, Küppers S, Stolten D. Power-to-gas: electrolyzers as an alternative to network expansion—an example from a distribution system operator. Applied Energy, 2018, 210: 182–197
|
15 |
Maroufmashat A, Fowler M. Transition of future energy system infrastructure through power-to-gas pathways. Energies, 2017, 10(8): 1089
|
16 |
Kreuter W, Hofmann H. Electrolysis: the important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy, 1998, 23(8): 661–666
|
17 |
Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2011, 100(2): 410–426
|
18 |
Laguna Bercero M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4–16
|
19 |
Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T. Renewable power-to-gas: a technological and economic review. Renewable Energy, 2016, 85: 1371–1390
|
20 |
Ehteshami S M M, Chan S H. The role of hydrogen and fuel cells to store renewable energy in the future energy network—potentials and challenges. Energy Policy, 2014, 73: 103–109
|
21 |
International Energy Agency. The Future of Hydrogen. Technology Report. 2019
|
22 |
Sato S, Nagai K. Polymer membranes with hydrogen-selective and hydrogen-rejective properties. Membrane, 2005, 30(1): 20–28
|
23 |
Liemberger W, Groß M, Miltner M, Harasek M. Experimental analysis of membrane and pressure swing adsorption (PSA) for the hydrogen separation from natural gas. Journal of Cleaner Production, 2017, 167: 896–907
|
24 |
Gahleitner G. Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 2013, 38(5): 2039–2061
|
25 |
Sinigaglia T, Lewiski F, Santos Martins M E, Mairesse Siluk J C. Production, storage, fuel stations of hydrogen and its utilization in automotive applications: a review. International Journal of Hydrogen Energy, 2017, 42(39): 24597–24611
|
26 |
Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 2018, 43(22): 10420–10430
|
27 |
Saadi F H, Lewis N S, McFarland E W. Relative costs of transporting electrical and chemical energy. Energy & Environmental Science, 2018, 11(3): 469–475
|
28 |
van der Zwaan B C C, Schoots K, Rivera Tinoco R, Verbong G P J. The cost of pipelining climate change mitigation: an overview of the economics of CH4, CO2 and H2 transportation. Applied Energy, 2011, 88(11): 3821–3831
|
29 |
Dodds P E, Staffell I, Hawkes A D, Li F, Grünewald P, McDowall W, Ekins P. Hydrogen and fuel cell technologies for heating: a review. International Journal of Hydrogen Energy, 2015, 40(5): 2065–2083
|
30 |
Melaina M W, Antonia O, Penev M. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues. Technical Report NREL/TP-5600-51995. 2013
|
31 |
SNAM. Global Gas Report 2018. Washington D.C.: International Gas Union, 2018
|
32 |
Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode. International Journal of Hydrogen Energy, 2007, 32(2): 268–286
|
33 |
Schmura E, Klingenberg M, Paster M, Gruber J. Existing Natural Gas Pipeline Materials and Associated Operational Characteristics. DOE Hydrogen Program-FY 2005 Progress Report. 2005
|
34 |
Al Rafea K. Utilizing ‘power-to-gas’ technology for storing energy and to optimize the synergy between environmental obligations and economical requirements. Dissertation for the Doctoral Degree. Ontario: University of Waterloo, 2017, 13
|
35 |
Altfeld K, Pinchbeck D. Admissible hydrogen concentrations in natural gas systems. Gas Energy, 2013, 2103(03): 1–2
|
36 |
Penev M, Melaina M, Bush B, Muratori M, Warner E, Chen Y. Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California. Technical Report NREL/TP-6A50-66538. 2016
|
37 |
Jemena Gas Networks (NSW) Limited. Western Sydney Green Gas Project-Environmental Impact Statement. 2019
|
38 |
Karim G A, Wierzba I, Al Alousi Y. Methane-hydrogen mixtures as fuels. International Journal of Hydrogen Energy, 1996, 21(7): 625–631
|
39 |
Todd D M. Gas turbine improvements enhance IGCC viability. In: Proceedings of the 2000 Gasification Technologies Conference. Schenectady, NY: GE Power Systems, 2000, 8–11
|
40 |
Adhikari S, Fernando S. Hydrogen membrane separation techniques. Industrial & Engineering Chemistry Research, 2006, 45(3): 875–881
|
41 |
Lu H T. The impact of impurities on the performance of cellulose triacetate membranes for CO2 separation. Dissertation for the Doctoral Degree. Parkville: The University of Melbourne, 2018, 3–47
|
42 |
Baker R W. Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393–1411
|
43 |
Ghosal K, Freeman B D. Gas separation using polymer membranes: an overview. Polymers for Advanced Technologies, 1994, 5(11): 673–697
|
44 |
Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139
|
45 |
Kentish S E, Scholes C A, Stevens G W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering, 2008, 1(1): 52–66
|
46 |
Chen G, Buck F, Kistner I, Widenmeyer M, Schiestel T, Schulz A, Walker M, Weidenkaff A. A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
|
47 |
Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027
|
48 |
Barelli L, Bidini G, Gallorini F, Servili S. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy, 2008, 33(4): 554–570
|
49 |
Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168
|
50 |
Zornoza B, Casado C, Navajas A. Chapter 11 Advances in Hydrogen Separation and Purification with Membrane Technology. Amsterdam: Elsevier, 2013, 245–268
|
51 |
Ockwig N W, Nenoff T M. Membranes for hydrogen separation. Chemical Reviews, 2007, 107(10): 4078–4110
|
52 |
Koros W J, Fleming G. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80
|
53 |
Hu G, Jiang K, Wang R, Li G. Chapter 7. Technological assessment of CO2 capture and EOR/EGR/ECBM-based storage. In Cheung F M, Hong Y, eds. Green Finance, Sustainable Development, and the Belt and Road Initiative. London: Taylor & Francis, 2021, ISBN: 9780367898809
|
54 |
Uhlhorn R, Keizer K, Burggraaf A. Gas and surface diffusion in modified g-alumina systems. Journal of Membrane Science, 1989, 46(2-3): 225–241
|
55 |
Paul D. 1.04-Fundamentals of Transport Phenomena in Polymer Membranes. In Drioli E, Giorno L, eds. Comprehensive Membrane Science and Engineering. Oxford: Elsevier, 2010, 75–90
|
56 |
Boutilier M S, Sun C, O’Hern S C, Au H, Hadjiconstantinou N G, Karnik R. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano, 2014, 8(1): 841–849
|
57 |
Lin H, Freeman B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). Journal of Membrane Science, 2004, 239(1): 105–117
|
58 |
Roa F, Way J D. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladiumcopper membranes. Industrial & Engineering Chemistry Research, 2003, 42(23): 5827–5835
|
59 |
Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
|
60 |
Lu G, Da Costa J D, Duke M, Giessler S, Socolow R, Williams R, Kreutz T. Inorganic membranes for hydrogen production and purification: a critical review and perspective. Journal of Colloid and Interface Science, 2007, 314(2): 589–603
|
61 |
Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: a review. Journal of Membrane Science, 2011, 375(1-2): 28–45
|
62 |
Kamakoti P, Morreale B D, Ciocco M V, Howard B H, Killmeyer R P, Cugini A V, Sholl D S. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science, 2005, 307(5709): 569–573
|
63 |
O’Brien C P, Howard B H, Miller J B, Morreale B D, Gellman A J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. Journal of Membrane Science, 2010, 349(1-2): 380–384
|
64 |
Kuraoka K, Zhao H, Yazawa T. Pore-filled palladium-glass composite membranes for hydrogen separation by novel electroless plating technique. Journal of Materials Science, 2004, 39(5): 1879–1881
|
65 |
Itoh N, Akiha T, Sato T. Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity. Catalysis Today, 2005, 104(2-4): 231–237
|
66 |
Burggraaf A J. Important Characteristics of Inorganic Membranes. Amsterdam: Elsevier, 1996, 21–34
|
67 |
Collins J P, Way J D. Hydrogen selective membrane. US Patent, 5652020, 1997-07-29
|
68 |
Yan S, Maeda H, Kusakabe K, Morooka S. Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation. Industrial & Engineering Chemistry Research, 1994, 33(3): 616–622
|
69 |
Yun S, Ko J H, Oyama S T. Ultrathin palladium membranes prepared by a novel electric field assisted activation. Journal of Membrane Science, 2011, 369(1-2): 482–489
|
70 |
Tong J, Shirai R, Kashima Y, Matsumura Y. Preparation of a pinhole-free PdAg membrane on a porous metal support for pure hydrogen separation. Journal of Membrane Science, 2005, 260(1-2): 84–89
|
71 |
Shi Z, Wu S, Szpunar J A, Roshd M. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, 2006, 280(1-2): 705–711
|
72 |
Okazaki J, Tanaka D A P, Tanco M A L, Wakui Y, Mizukami F, Suzuki T M. Hydrogen permeability study of the thin PdAg alloy membranes in the temperature range across the αβ phase transition. Journal of Membrane Science, 2006, 282(1-2): 370–374
|
73 |
Harris J R. Coated diffusion membrane and its use. US Patent, 4536196, 1985-08-20
|
74 |
Peters T A, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. Journal of Membrane Science, 2011, 383(1-2): 124–134
|
75 |
Peters T A, Kaleta T, Stange M, Bredesen R. Hydrogen transport through a selection of thin Pd-alloy membranes: membrane stability, H2S inhibition, and flux recovery in hydrogen and simulated WGS mixtures. Catalysis Today, 2012, 193(1): 8–19
|
76 |
Nair B K R, Choi J, Harold M P. Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science, 2007, 288(1-2): 67–84
|
77 |
Gade S K, Thoen P M, Way J D. Unsupported palladium alloy foil membranes fabricated by electroless plating. Journal of Membrane Science, 2008, 316(1-2): 112–118
|
78 |
Sanz R, Calles J A, Alique D, Furones L, Ordóñez S, Marín P, Corengia P, Fernandez E. Preparation, testing and modelling of a hydrogen selective Pd/YSZ/SS composite membrane. International Journal of Hydrogen Energy, 2011, 36(24): 15783–15793
|
79 |
Roa F, Block M J, Way J D. The influence of alloy composition on the H2 flux of composite Pd-Cu membranes. Desalination, 2002, 147(1-3): 411–416
|
80 |
Lukyanov B N, Andreev D V, Parmon V N. Catalytic reactors with hydrogen membrane separation. Chemical Engineering Journal, 2009, 154(1-3): 258–266
|
81 |
Emerson S, Magdefrau N, She Y, Thibaud Erkey C. Advanced Palladium Membrane Scale-up for Hydrogen Separation. Technical Report DEFE0004967. 2012
|
82 |
De Falco M, Iaquaniello G, Palo E, Cucchiella B, Palma V, Ciambelli P. Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor. In: Handbook of Membrane Reactors. Cambridge: Woodhead Publishing, 2013, 456–486
|
83 |
Rosensteel W A, Ricote S, Sullivan N P. Hydrogen permeation through dense BaCe0.8Y0.2O3dCe0.8Y0.2O2d composite-ceramic hydrogen separation membranes. International Journal of Hydrogen Energy, 2016, 41(4): 2598–2606
|
84 |
Elangovan S, Nair B, Small T, Heck B, Bay I, Timper M, Hartvigsen J, Wilson M. Ceramic membrane devices for ultra-high purity hydrogen production: mixed conducting membrane development. New York: Springer, 2009, 67–81
|
85 |
Phair J, Badwal S. Review of proton conductors for hydrogen separation. Ionics, 2006, 12(2): 103–115
|
86 |
Tao Z, Yan L, Qiao J, Wang B, Zhang L, Zhang J. A review of advanced proton-conducting materials for hydrogen separation. Progress in Materials Science, 2015, 74: 1–50
|
87 |
Fontaine M L, Norby T, Larring Y, Grande T, Bredesen R. Oxygen and hydrogen separation membranes based on dense ceramic conductors. Membrane Science and Technology, 2008, 13: 401–458
|
88 |
Cardoso S P, Azenha I S, Lin Z, Portugal I, Rodrigues A E, Silva C M. Inorganic membranes for hydrogen separation. Separation and Purification Reviews, 2018, 47(3): 229–266
|
89 |
Lundin S T B, Patki N S, Fuerst T F, Ricote S, Wolden C A, Way J D. Dense Inorganic Membranes for Hydrogen Separation. New Jersey: World Scientific Publishing, 2017
|
90 |
Meulenberg W, Ivanova M, Serra J, Roitsch S. Proton-Conducting Ceramic Membranes for Solid Oxide Fuel Cells and Hydrogen (H2) Processing. Amsterdam: Elsevier, 2011, 541–567
|
91 |
Tan X, Tan X, Yang N, Meng B, Zhang K, Liu S. High performance BaCe0.8Y0.2O3–α (BCY) hollow fibre membranes for hydrogen permeation. Ceramics International, 2014, 40(2): 3131–3138
|
92 |
Hung I M, Chiang Y J, Jang J S C, Lin J C, Lee S W, Chang J K, Hsi C S. The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3–d ceramic separation membrane. Journal of the European Ceramic Society, 2015, 35(1): 163–170
|
93 |
Mather G C, Poulidi D, Thursfield A, Pascual M J, Jurado J R, Metcalfe I S. Hydrogen-permeation characteristics of a SrCeO3-based ceramic separation membrane: thermal, ageing and surface-modification effects. Solid State Ionics, 2010, 181(3-4): 230–235
|
94 |
Omata T, Otsuka Yao Matsuo S. Infrared absorption spectra of high temperature proton conducting Ca2+-doped La2Zr2O7. Journal of the Electrochemical Society, 2001, 148(12): 475–482
|
95 |
Hamakawa S, Li L, Li A, Iglesia E. Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3–α thin films. Solid State Ionics, 2002, 148(1-2): 71–81
|
96 |
Tong J, Su L, Haraya K, Suda H. Thin and defect-free Pd-based composite membrane without any interlayer and substrate penetration by a combined organic and inorganic process. Chemical Communications, 2006, (10): 1142–1144
|
97 |
Escolástico S, Somacescu S, Serra J M. Tailoring mixed ionicelectronic conduction in H2 permeable membranes based on the system Nd5.5W1−xMoxO11.25−d. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(2): 719–731
|
98 |
Chen Y, Cheng S, Chen L, Wei Y, Ashman P J, Wang H. Niobium and molybdenum co-doped La5.5WO11.25−d membrane with improved hydrogen permeability. Journal of Membrane Science, 2016, 510: 155–163
|
99 |
Zhu Z, Sun W, Wang Z, Cao J, Dong Y, Liu W. A high stability NiLa0.5Ce0.5O2−d asymmetrical metalceramic membrane for hydrogen separation and generation. Journal of Power Sources, 2015, 281: 417–424
|
100 |
Balachandran U, Lee T, Chen L, Song S, Picciolo J, Dorris S. Hydrogen separation by dense cermet membranes. Fuel, 2006, 85(2): 150–155
|
101 |
Meng X, Song J, Yang N, Meng B, Tan X, Ma Z F, Li K. NiBaCe0.95Tb0.05O3−d cermet membranes for hydrogen permeation. Journal of Membrane Science, 2012, 401: 300–305
|
102 |
Rebollo E, Mortalò C, Escolástico S, Boldrini S, Barison S, Serra J M, Fabrizio M. Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−d and Y-or Gd-doped ceria. Energy & Environmental Science, 2015, 8(1-2): 3675–3686
|
103 |
Chiu W V, Park I S, Shqau K, White J C, Schillo M C, Ho W S W, Dutta P K, Verweij H. Post-synthesis defect abatement of inorganic membranes for gas separation. Journal of Membrane Science, 2011, 377(1): 182–190
|
104 |
Xu S, Zhang X, Cheng D, Chen F, Ren X. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
|
105 |
Ye Z, Zhang H, Zhang Y, Tang Y. Seedinduced synthesis of functional MFI zeolite materials: method development, crystallization mechanisms and catalytic properties. Frontiers of Chemical Science and Engineering, 2019: 1–16
|
106 |
Huang A, Wang N, Caro J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous and Mesoporous Materials, 2012, 164: 294–301
|
107 |
Huang A, Wang N, Caro J. Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. Journal of Membrane Science, 2012, 389: 272–279
|
108 |
Tang Z, Dong J, NenoffT M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir, 2009, 25(9): 4848–4852
|
109 |
Shafie A H, An W, Hosseinzadeh Hejazi S A, Sawada J A, Kuznicki S M. Natural zeolite-based cement composite membranes for H2/CO2 separation. Separation and Purification Technology, 2012, 88: 24–28
|
110 |
Prabhu A K, Oyama S T. Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases. Journal of Membrane Science, 2000, 176(2): 233–248
|
111 |
Tsuru T. Development of metal-doped silica membranes for increased hydrothermal stability and their applications to membrane reactors for steam reforming of methane. Journal of the Japan Petroleum Institute, 2011, 54(5): 277–286
|
112 |
Fan J, Ohya H, Suga T, Ohashi H, Yamashita K, Tsuchiya S, Aihara M, Takeuchi T, Negishi Y. High flux zirconia composite membrane for hydrogen separation at elevated temperature. Journal of Membrane Science, 2000, 170(1): 113–125
|
113 |
Koresh J E, Soffer A. The carbon molecular sieve membranes: general properties and the permeability of CH4/H2 mixture. Separation Science and Technology, 1987, 22(2-3): 973–982
|
114 |
Vieira-Linhares A M, Seaton N A. Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane. Chemical Engineering Science, 2003, 58(18): 4129–4136
|
115 |
Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation: a review. Carbon, 2004, 42(2): 241–259
|
116 |
Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9(12): 4019–4024
|
117 |
Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
|
118 |
Lu P, Liu Y, Zhou T, Wang Q, Li Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567: 89–103
|
119 |
Liu Y, Wang N, Caro J. In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(16): 5716–5723
|
120 |
Liu Y, Peng Y, Wang N, Li Y, Pan J H, Yang W, Caro J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
|
121 |
Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21(20): 4920–4924
|
122 |
Huang A, Dou W, Caro J R. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. Journal of the American Chemical Society, 2010, 132(44): 15562–15564
|
123 |
Zhang F, Zou X, Gao X, Fan S, Sun F, Ren H, Zhu G. Hydrogen selective NH2-MIL-53 (Al) MOF membranes with high permeability. Advanced Functional Materials, 2012, 22(17): 3583–3590
|
124 |
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J, Koros W J, Jones C W, Nair S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
|
125 |
Sutrisna P D, Savitri E, Himma N F, Prasetya N, Wenten I G. Current perspectives and mini review on zeolitic imidazolate framework-8 (ZIF-8) membranes on organic substrates. IOP Conference Series. Materials Science and Engineering, 2019, 703(1): 012045
|
126 |
Dong J, Lin Y, Liu W. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes. AIChE Journal, 2000, 46(10): 1957–1966
|
127 |
Poshusta J C, Tuan V A, Falconer J L, Noble R D. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 3924–3929
|
128 |
Liu B S, Au C T. A La2NiO4-zeolite membrane reactor for the CO2 reforming of methane to syngas. Catalysis Letters, 2001, 77(1-3): 67–74
|
129 |
Lee D, Zhang L, Oyama S, Niu S, Saraf R F. Synthesis, characterization and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina. Journal of Membrane Science, 2004, 231(1-2): 117–126
|
130 |
Moon J H, Bae J H, Bae Y S, Chung J T, Lee C H. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane. Journal of Membrane Science, 2008, 318(1-2): 45–55
|
131 |
Gu Y, Oyama S T. Ultrathin, hydrogen-selective silica membranes deposited on alumina-graded structures prepared from size-controlled boehmite sols. Journal of Membrane Science, 2007, 306(1-2): 216–227
|
132 |
Jones C W, Koros W J. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 1994, 32(8): 1419–1425
|
133 |
Petersen J, Matsuda M, Haraya K. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science, 1997, 131(1-2): 85–94
|
134 |
Wei W, Hu H, You L, Chen G. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon, 2002, 40(3): 465–467
|
135 |
Kusuki Y, Shimazaki H, Tanihara N, Nakanishi S, Yoshinaga T. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997, 134(2): 245–253
|
136 |
Tanihara N, Shimazaki H, Hirayama Y, Nakanishi S, Yoshinaga T, Kusuki Y. Gas permeation properties of asymmetric carbon hollow fiber membranes prepared from asymmetric polyimide hollow fiber. Journal of Membrane Science, 1999, 160(2): 179–186
|
137 |
Kita H, Yoshino M, Tanaka K, Okamoto K. Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications, 1997, (11): 1051–1052
|
138 |
Guo H, Zhu G, Hewitt I J, Qiu S. “Twin copper source” growth of metalorganic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
|
139 |
Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J R. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
|
140 |
Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chemical Communications, 2012, 48(89): 10981–10983
|
141 |
Lee D J, Li Q, Kim H, Lee K. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012, 163: 169–177
|
142 |
Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer, 2013, 54(18): 4729–4761
|
143 |
Ekiner O, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation—spinning and properties. Journal of Membrane Science, 1990, 53(3): 259–273
|
144 |
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
|
145 |
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
|
146 |
Esposito E, Mazzei I, Monteleone M, Fuoco A, Carta M, McKeown N, Malpass Evans R, Jansen J. Highly permeable matrimid®/PIM-EA (H2)-TB blend membrane for gas separation. Polymers, 2018, 11(1): 46
|
147 |
McKeown N B, Budd P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35(8): 675–683
|
148 |
Li F Y, Xiao Y, Chung T S, Kawi S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules, 2012, 45(3): 1427–1437
|
149 |
Kim S, Lee Y M. Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43: 1–32
|
150 |
Park H B, Jung C H, Lee Y M, Hill A J, Pas S J, Mudie S T, Van Wagner E, Freeman B D, Cookson D J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258
|
151 |
Han S H, Lee J E, Lee K J, Park H B, Lee Y M. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357(1-2): 143–151
|
152 |
Han S H, Misdan N, Kim S, Doherty C M, Hill A J, Lee Y M. Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules, 2010, 43(18): 7657–7667
|
153 |
Yeong Y F, Wang H, Pallathadka Pramoda K, Chung T S. Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397: 51–65
|
154 |
Zornoza B, Téllez C, Coronas J, Esekhile O, Koros W J. Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases. AIChE Journal, 2015, 61(12): 4481–4490
|
155 |
Safak Boroglu M, Yumru A B. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology, 2017, 173: 269–279
|
156 |
Kim E, Kim H, Kim D, Kim J, Lee P. Preparation of mixed matrix membranes containing ZIF-8 and UiO-66 for multicomponent light gas separation. Crystals, 2019, 9(1): 15
|
157 |
Weng T H, Tseng H H, Wey M Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. International Journal of Hydrogen Energy, 2009, 34(20): 8707–8715
|
158 |
Xie K, Fu Q, Xu C, Lu H, Zhao Q, Curtain R, Gu D, Webley P A, Qiao G G. Continuous assembly of a polymer on a metalorganic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy & Environmental Science, 2018, 11(3): 544–550
|
159 |
Hu G, Chen C, Lu H T, Wu Y, Liu C, Tao L, Men Y, He G, Li G. A review of technical advances, barriers and solutions in the power to gas (P2G) roadmap. Engineering, 2020, (in press)
|
160 |
APA Group. Gas Specification for Roma-Brisbane Pipeline. 2010
|
161 |
De Wild P, Nyqvist R, De Bruijn F, Stobbe E. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications. Journal of Power Sources, 2006, 159(2): 995–1004
|
162 |
Golebiowska M, Roth M, Firlej L, Kuchta B, Wexler C. The reversibility of the adsorption of methanemethyl mercaptan mixtures in nanoporous carbon. Carbon, 2012, 50(1): 225–234
|
163 |
Farrauto R J. Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen. Applied Catalysis B: Environmental, 2005, 56(1-2): 3–7
|
164 |
Peters T A, Stange M, Veenstra P, Nijmeijer A, Bredesen R. The performance of PdAg alloy membrane films under exposure to trace amounts of H2S. Journal of Membrane Science, 2016, 499: 105–115
|
165 |
De Nooijer N, Sanchez J D, Melendez J, Fernandez E, Pacheco Tanaka D A, Van Sint Annaland M, Gallucci F. Influence of H2S on the hydrogen flux of thin-film PdAgAu membranes. International Journal of Hydrogen Energy, 2020, 45(12): 7303–7312
|
166 |
Fotou G, Lin Y, Pratsinis S E. Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science, 1995, 30(11): 2803–2808
|
167 |
Uhlmann D, Smart S, Diniz Da Costa J C H. 2S stability and separation performance of cobalt oxide silica membranes. Journal of Membrane Science, 2011, 380(1-2): 48–54
|
168 |
de Vos R M, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation. Journal of Membrane Science, 1999, 158(1-2): 277–288
|
169 |
Wei Q, Ding Y L, Nie Z R, Liu X G, Li Q Y. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. Journal of Membrane Science, 2014, 466: 114–122
|
170 |
Glass R W, Ross R A. Surface studies of the adsorption of sulfur-containing gases at 423.deg.K on porus adsorbents. II. Adsorption of hydrogen sulfide, methanethiol, ethanethiol and dimethyl sulfide on gamma.-alumina. Journal of Physical Chemistry, 1973, 77(21): 2576–2578
|
171 |
Akamatsu K, Nakane M, Sugawara T, Hattori T, Nakao S. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane. Journal of Membrane Science, 2008, 325(1): 16–19
|
172 |
Schell W, Wensley C, Chen M, Venugopal K, Miller B, Stuart J. Recent advances in cellulosic membranes for gas separation and pervaporation. Gas Separation & Purification, 1989, 3(4): 162–169
|
173 |
Lu H, Kanehashi S, Scholes C, Kentish S. The impact of ethylene glycol and hydrogen sulphide on the performance of cellulose triacetate membranes in natural gas sweetening. Journal of Membrane Science, 2017, 539: 432–440
|
174 |
Plaisance C P, Dooley K M. Zeolite and metal oxide catalysts for the production of dimethyl sulfide and methanethiol. Catalysis Letters, 2009, 128(3-4): 449–458
|
175 |
Walker S B, Mukherjee U, Fowler M, Elkamel A. Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. International Journal of Hydrogen Energy, 2016, 41(19): 7717–7731
|
176 |
Lubitz W, Tumas W. Hydrogen: an overview. Chemical Reviews, 2007, 107(10): 3900–3903
|
177 |
Iulianelli A, Drioli E. Membrane engineering: latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206: 106464
|
178 |
Coker D, Freeman B, Fleming G. Modeling multicomponent gas separation using hollowfiber membrane contactors. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(6): 1289–1302
|
179 |
Kundu P K, Chakma A, Feng X. Simulation of binary gas separation with asymmetric hollow fibre membranes and case studies of air separation. Canadian Journal of Chemical Engineering, 2012, 90(5): 1253–1268
|
180 |
Soroodan Miandoab E, Kentish S E, Scholes C A. Non-ideal modelling of polymeric hollow-fibre membrane systems: pre-combustion CO2 capture case study. Journal of Membrane Science, 2020, 595: 117470
|
181 |
Franz J, Scherer V. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183
|
182 |
Basile A, Dalena F, Tong J, Veziroğlu T N. Hydrogen Production, Separation and Purification for Energy. London: The Insititution of Engineering and Technology, 2017
|
183 |
Liemberger W, Halmschlager D, Miltner M, Harasek M. Efficient extraction of hydrogen transported as co-stream in the natural gas grid—the importance of process design. Applied Energy, 2019, 233-234: 747–763
|
/
〈 | 〉 |