RESEARCH ARTICLE

Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2

  • Baowei Wang , 1 ,
  • Xiaoxi Wang 1 ,
  • Bo Zhang 2
Expand
  • 1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

Received date: 13 Apr 2020

Accepted date: 15 Jun 2020

Published date: 15 Jun 2021

Copyright

2020 Higher Education Press

Abstract

Four coaxial cylinder dielectric barrier discharge micro-plasma reactors were designed for the non-catalytic decomposition of pure CO2 into CO and O2 at low temperature and ambient pressure. The influence of segmented outer electrodes on the electrical characteristics and the reaction performance was investigated. Experimental results indicated that the introduction of segmented outer electrodes can significantly promote the decomposition of CO2. Encouragingly, the highest conversion of 13.1% was obtained at an applied voltage of 18 kV, which was a substantial increase of 39.4% compared to the traditional device. Compared with other types of dielectric barrier discharge plasma reactors, the proposed segmented outer electrode micro-plasma reactor can give a higher CO2 conversion and acceptable energy efficiency. The increase in conversion can be attributed mainly to the enhanced corona discharge caused by the fringe effect at electrode edges, the increase in energy density and the increase in the number of micro-discharges. In addition, detailed electrical characterization was performed to reveal some trends in the electrical behavior of proposed reactors.

Cite this article

Baowei Wang , Xiaoxi Wang , Bo Zhang . Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 687 -697 . DOI: 10.1007/s11705-020-1974-1

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0600701).
1
Zhou A, Chen D, Ma C, Yu F, Dai B. DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures. Catalysts, 2018, 8(7): 2073–4344

DOI

2
Jiang Z, Xiao T, Kuznetsov V L, Edwards P P. Turning carbon dioxide into fuel. Philosophical Transactions, 1923, 2010(368): 3343–3364

3
Snoeckx R, Bogaerts A. Plasma technology—a novel solution for CO2 conversion? Chemical Society Reviews, 2017, 46(19): 5805–5863

DOI

4
Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012, 2(6): 2358–2368

DOI

5
Wang B, Chi C, Xu M, Wang C, Meng D. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chemical Engineering Journal, 2017, 322: 679–692

DOI

6
Saleem F, Zhang K, Harvey A P. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma. Chemical Engineering Journal, 2019, 360: 714–720

DOI

7
Ge W J, Duan X F, Li Y P, Wang B W. Plasma-catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production. Plasma Chemistry and Plasma Processing, 2015, 35(1): 187–199

DOI

8
Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 2017, 326: 477–488

DOI

9
Zhu B, Zhang L Y, Li M, Yan Y, Zhang X M, Zhu Y M. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chemical Engineering Journal, 2020, 381: 122599

DOI

10
Duan X F, Hu Z Y, Li Y P, Wang B W. Effect of dielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. AIChE Journal, 2015, 61(3): 898–903

DOI

11
Duan X F, Li Y P, Ge W J, Wang B W. Degradation of CO2 through dielectric barrier discharge microplasma. Greenhouse Gases Science and Technology, 2015, 5(2): 131–140

DOI

12
Trenchev G, Bogaerts A.Dual-vortex plasmatron: a novel plasma source for CO2 conversion. Journal of CO2 Utilization, 2020, 39: 101152

13
Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027

DOI

14
Zhu S, Zhou A, Feng Y U, Dai B, Ma C. Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science & Technology, 2019, 21(8): 085504

DOI

15
Niu G, Qin Y, Li W, Duan Y. Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor. Plasma Chemistry and Plasma Processing, 2019, 39(4): 809–824

DOI

16
Li L, Zhang H F, Li X, Kong X, Xu R, Tay K, Tu X. Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design. Journal of CO2 Utilization, 2019, 29: 296–303

17
Li A, Pei Y, Tao X, Wang Z. Effects of discharge parameters on carbon dioxide conversion in TiO2 packed dielectric barrier discharge at atmospheric pressure. SN Applied Sciences, 2019, 1(8): 816

DOI

18
Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1–46

DOI

19
Mohsenian S, Nagassou D, Bhatta S, Elahi R, Trelles J P. Design and characterization of a solar-enhanced microwave plasma reactor for atmospheric pressure carbon dioxide decomposition. Plasma Sources Science & Technology, 2019, 28(6): 065001

DOI

20
van den Bekerom D C M, Linares J M P, Verreycken T, van Veldhuizen E M, Nijdam S, Berden G, Bongers W A, van de Sanden M C M, van Rooij G J. The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Science & Technology, 2019, 28(5): 055015

DOI

21
Moreno S H, Stankiewicz A, Stefanidis G. A two-step modelling approach for plasma reactors—experimental validation for CO2 dissociation in surface wave microwave plasma. Reaction Chemistry & Engineering, 2019, 4(7): 1253–1269

DOI

22
Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2015, 36(2): 1–13

23
Kolev S, Bogaerts A. Similarities and differences between gliding glow and gliding arc discharges. Plasma Sources Science & Technology, 2015, 24(6): 065023

DOI

24
Lin L, Wu B, Yang C, Wu C K. Characteristics of gliding arc discharge plasma. Plasma Science & Technology, 2006, 8(6): 653–655

DOI

25
Li L, Zhang H, Li X, Huang J, Kong X, Xu R, Tu X. Magnetically enhanced gliding arc discharge for CO2 activation. Journal of CO2 Utilization, 2020, 35: 28–37

26
Wang B W, Yan W J, Ge W J, Duan X F. Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor. Chemical Engineering Journal, 2013, 234(12): 354–360

DOI

27
Damideh V, Chin O H, Gabbar H A, Ch’ng S J, Tan C Y. Study of ozone concentration from CO2 decomposition in a water cooled coaxial dielectric barrier discharge. Vacuum, 2020, 177: 109370

DOI

28
Lee B, Kim D W, Park D. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197

DOI

29
Niu G, Li Y, Tang J, Wang X, Duan Y. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474

DOI

30
Banerjee A M, Billinger J, Nordheden K J, Peeters F J J. Conversion of CO2 in a packed-bed dielectric barrier discharge reactor. Journal of Vacuum Science and Technology, 2018, 36(4): 04F403

31
Uytdenhouwen Y, Van Alphen S, Michielsen I, Meynen V, Cool P, Bogaerts A. A packed-bed DBD micro plasma reactor for CO2 dissociation: does size matter? Chemical Engineering Journal, 2018, 348: 557–568

DOI

32
Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763

DOI

33
Lee B, Kim D W, Park D W. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197

DOI

34
Lu N, Sun D, Zhang C, Jiang N, Shang K, Bao X, Li J, Wu Y. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes. Journal of Physics D: Applied Physics, 2018, 51(9): 094001

DOI

35
Gao G, Dong L, Peng K, Wei W, Li C, Wu G. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps. Physics of Plasmas, 2017, 24(1): 013510

DOI

36
Pipa A V, Hoder T, Koskulics J, Schmidt M, Brandenburg R. Experimental determination of dielectric barrier discharge capacitance. Review of Scientific Instruments, 2012, 83(7): 075111

DOI

37
Manley T C. The electric characteristics of the ozonator discharge. Transactions of the Electrochemical Society, 1943, 84(1): 83–96

DOI

38
Kasper C. The Theory of the potential and the technical practice of electrodeposition. Journal of the Franklin Institute, 1943, 236(3): 304–305

DOI

39
Reichen P, Sonnenfeld A, Von Rohr P R. Discharge expansion in barrier discharge arrangements at low applied voltages. Plasma Sources Science & Technology, 2011, 20(5): 055015

DOI

40
Liu S, Neiger M. Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage. Journal of Physics D: Applied Physics, 2003, 36(24): 3144–3150

DOI

41
Belov I, Paulussen S, Bogaerts A. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science & Technology, 2016, 25(1): 015023

DOI

42
Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Applied Catalysis B: Environmental, 2008, 78(3): 324–333

DOI

43
Bruggeman P J P, Brandenburg R. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal of Physics D: Applied Physics, 2013, 46(46): 464001

DOI

44
Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. Journal of Physics D: Applied Physics, 1987, 20(11): 1421–1437

DOI

45
Tao S, Kaihua L, Cheng Z, Ping Y, Shichang Z, Ruzheng P. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics, 2008, 41(21): 215203

DOI

46
Sreethawong T, Permsin N, Suttikul T, Chavadej S. Ethylene epoxidation in low-temperature AC dielectric barrier discharge: effect of electrode geometry. Plasma Chemistry and Plasma Processing, 2010, 30(4): 503–524

DOI

47
Gadkari S, Gu S. Numerical investigation of coaxial DBD: influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency. Physics of Plasmas, 2017, 24(5): 053517

DOI

48
Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H. Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Transactions on Plasma Science, 2015, 43(3): 836–845

DOI

49
Tyata R B, Subedi D P, Shrestha R, Wong C S. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge. Pramana-Journal of Physics, 2013, 80(3): 507–517

DOI

50
Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A. CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy & Environmental Science, 2016, 9(3): 999–1011

DOI

51
Chen P, Shen J, Ran T, Yang T, Yin Y. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma. Plasma Science & Technology, 2017, 19(12): 125505

DOI

52
Lu N, Zhang C K, Shang K F, Jiang N, Li J, Wu Y. Dielectric barrier discharge plasma assisted CO2 conversion: understanding the effects of reactor design and operating parameters. Journal of Physics D: Applied Physics, 2019, 52(22): 224003

DOI

53
Niu G, Li Y, Tang J, Wang X, Duan Y. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474

DOI

Outlines

/