Frontiers of Chemical Science and Engineering >
Reductant-assisted polydopamine-modified membranes for efficient water purification
Received date: 12 Jun 2020
Accepted date: 06 Jul 2020
Published date: 15 Feb 2021
Copyright
Surface engineering with polydopamine coatings has been considered a promising surface functionalisation tool. However, it is difficult to control the self-polymerisation for polydopamine formation, which usually causes severe interparticle aggregation. In this study, polydopamine self-polymerisation was controlled by adjusting its reducing environment using a reductant (NaBH4) to fabricate mixed cellulose ester (MCE)/polydopamine membranes. An oxidising environment using NaIO4 was additionally tested as the control. The results showed that a thin polydopamine coating with small polydopamine particles was formed on the skeleton frameworks of the MCE membrane with NaBH4, and the self-polymerisation rate was suppressed. The polydopamine coating formed in the reducing environment facilitated excellent water transport performance with a water permeance of approximately 400 L·m−2·h−1·bar−1 as well as efficient organic foulant removal with a bovine serum albumin rejection of approximately 90%. In addition, the polydopamine coating with NaBH4 exhibited both excellent chemical stability and anti-microbial activity, demonstrating the contribution of the reducing environment to the performance of the MCE/polydopamine membranes. It shows significant potential for use in water purification.
Feng Sun , Jinren Lu , Yuhong Wang , Jie Xiong , Congjie Gao , Jia Xu . Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(1) : 109 -117 . DOI: 10.1007/s11705-020-1987-9
1 |
Lee A, Elam J W, Darling S B. Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2016, 2(1): 17–42
|
2 |
Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: status and future. Angewandte Chemie International Edition, 2015, 54(11): 3368–3386
|
3 |
Yu H, Qiu X, Moreno N, Ma Z, Calo V M, Nunes S P, Peinemann K V. Self-assembled asymmetric block copolymer membranes: bridging the gap from ultra to nanofiltration. Angewandte Chemie International Edition, 2015, 54(47): 13937–13941
|
4 |
Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston A G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society, 2013, 135(40): 15201–15208
|
5 |
Lau W J, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1): 321–348
|
6 |
Xu J, Feng X, Hou J, Wang X, Shan B T, Yu L M, Gao C J. Preparation and characterization of a novel polysulfone ultrafiltration membrane using a copolymer with capsaicin-mimic moieties for improved anti-fouling properties. Journal of Membrane Science, 2013, 446: 171–180
|
7 |
Xu J, Feng X S, Chen P P, Gao C J. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 2012, 431–414: 62–69
|
8 |
Li M, Xu J, Chang C Y, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nano-filtration membrane based on the formation of 3,4-dihydroxyphenethylamine/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71
|
9 |
Wang K, Dong Y, Yan Y, Zhang S, Li J. Mussel-inspired chemistry for preparation of super-hydrophobic surfaces on porous substrates. RSC Advances, 2017, 7(46): 29149–29158
|
10 |
Postma A, Yan Y, Wang Y, Zelikin A N, Tjipto E, Caruso F. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 2009, 21(14): 3042–3044
|
11 |
Ryou M H, Lee Y M, Park J K, Choi J W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Advanced Materials, 2011, 23(27): 3066–3070
|
12 |
Peng H P, Liang R P, Zhang L, Qiu J D. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe3O4 magnetic bio-nanoparticles for glucosesensor. Biosensors & Bioelectronics, 2013, 42: 293–299
|
13 |
Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442
|
14 |
Liu M, Zeng G, Wang K, Wan Q, Tao L, Zhang X, Wei Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8(38): 16819–16840
|
15 |
Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430
|
16 |
Shi G M, Chung T S. Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2013, 448: 34–43
|
17 |
Jiang J H, Zhu L P, Li X L, Xu Y Y, Zhu B K. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 2010, 364(1-2): 194–202
|
18 |
Yang Z, Wu Y, Guo H, Ma X H, Lin C E, Zhou Y, Cao B, Zhu B K, Shi K, Tang C Y. A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: separation performance enhancement and implications. Journal of Membrane Science, 2017, 544: 351–358
|
19 |
Zhu J, Uliana A, Wang J, Yuan S, Li J, Tian M, Simoens K, Volodin A, Lin J, Bernaerts K, Zhang Y, Van der Bruggen B. Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles via fast bioinspired deposition. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(34): 13211–13222
|
20 |
Zhu J, Wang J, Uliana A, Tian M, Zhang Y, Zhang Y, Volodin A, Simoens K, Yuan S, Li J, Lin J, Bernaerts K, Van der Bruggen B. Mussel-inspired architecture of high-flux loose nanofiltration membrane functionalized with antibacterial reduced graphene oxide-copper nanocomposites. ACS Applied Materials & Interfaces, 2017, 9(34): 28990–29001
|
21 |
Shen H, Wang N, Ma K, Wang L, Chen G, Ji S. Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance. Journal of Membrane Science, 2017, 527: 43–50
|
22 |
Shao L, Wang Z X, Zhang Y L, Jiang Z X, Liu Y Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. Journal of Membrane Science, 2014, 461: 10–21
|
23 |
Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K. Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 2014, 6(15): 12566–12572
|
24 |
Zeng R, Luo Z, Zhou D, Cao F, Wang Y. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis, 2010, 31(19): 3334–3341
|
25 |
Zeng T, Zhang X L, Niu H Y, Ma Y R, Li W H, Cai Y Q. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene. Applied Catalysis B: Environmental, 2013, 134-135: 26–33
|
26 |
Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 2009, 21(4): 431–434
|
27 |
Hou C, Qi Z, Zhu H. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids and Surfaces. B, Biointerfaces, 2015, 128: 544–551
|
28 |
Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33(29): 6952–6964
|
29 |
Zhou R, Ren P F, Yang H C, Xu Z K. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 2014, 466: 18–25
|
30 |
Shevate R, Kumar M, Karunakaran M, Hedhili M N, Peinemann K V. Polydopamine/cysteine surface modified isoporous membranes with selfcleaning properties. Journal of Membrane Science, 2017, 529: 185–194
|
31 |
Ingole P G, Choi W, Kim K H, Park C H, Choi W K, Lee H K. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation. Chemical Engineering Journal, 2014, 243: 137–146
|
32 |
Arena J T, Manickam S S, Reimund K K, Freeman B D, McCutcheon J R. Solute and water transport in forward osmosis using polydopamine modified thin film composite membranes. Desalination, 2014, 343: 8–16
|
33 |
Li F, Meng J, Ye J, Yang B, Tian Q, Deng C. Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethyleneglycol) grafting: morphology, stability, and anti-fouling. Desalination, 2014, 344: 422–430
|
34 |
Tripathi B P, Dubey N C, Subair R, Choudhury S, Stamm M. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles. RSC Advances, 2016, 6(6): 4448–4457
|
35 |
Chen Y, He C. High salt permeation nanofiltration membranes based on NMG assisted polydopamine coating for dye/salt fractionation. Desalination, 2017, 413: 29–39
|
36 |
Xu L N, Xu J, Shan B T, Wang X L, Gao C J. Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 7920–7932
|
37 |
Jiang J H, Zhu L P, Zhang H T, Zhu B K, Xu Y Y. Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives. Journal of Membrane Science, 2014, 457: 73–81
|
38 |
Cheng C, Li S, Zhao W, Wei Q, Nie S, Sun S, Zhao C. The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417-418: 228–236
|
39 |
Guo H, Yao Z, Wang J, Yang Z, Ma X, Tang C Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242
|
40 |
Ryu J, Ku S H, Lee H, Park C B. Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Advanced Functional Materials, 2010, 20(13): 2132–2139
|
41 |
Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J. Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 2013, 7(10): 9384–9395
|
42 |
Ryu J H, Messersmith P B, Lee H. Polydopamine surface chemistry: a decade of discovery. ACS Applied Materials & Interfaces, 2018, 10(9): 7523–7540
|
43 |
Fei B, Qian B, Yang Z, Wang R, Liu W C, Mak C L, Xin J H. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon, 2008, 46(13): 1795–1797
|
44 |
Han G, Zhang S, Li X, Widjojo N, Chung T S. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 2012, 80: 219–231
|
45 |
Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10225–10230
|
46 |
Yang X, Du Y, Zhang X, He A, Xu Z K. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance. Langmuir, 2017, 33(9): 2318–2324
|
47 |
Wei H, Ren J, Han B, Xu L, Han L, Jia L. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces. B, Biointerfaces, 2013, 110: 22–28
|
48 |
Jiang J, Zhu L, Zhu L, Zhang H, Zhu B, Xu Y. Zhu, Xu B Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013, 5(24): 12895–12904
|
49 |
Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, Gracio J J, Toniazzo V, Ruch D. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir, 2011, 27(6): 2819–2825
|
50 |
Xu J, Tang Y Y, Wang Y H, Shan B T, Yu L M, Gao C J. Effect of coagulation bath conditions on the morphology and performance of PSf membrane blended with a capsaicin-mimic copolymer. Journal of Membrane Science, 2014, 455: 121–130
|
51 |
Xu J, Feng S, Gao C J. Surface modification of thin-film-composite poly-amide membranes for improved reverse osmosis performance. Journal of Membrane Science, 2011, 370(1-2): 116–123
|
/
〈 | 〉 |