RESEARCH ARTICLE

Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage

  • Wenxin Xu 1 ,
  • Xin Zhao 1 ,
  • Jiali Tang 1 ,
  • Chao Zhang 1 ,
  • Yu Gao 1 ,
  • Shin-ichi Sasaki 2,3 ,
  • Hitoshi Tamiaki 2 ,
  • Aijun Li , 1 ,
  • Xiao-Feng Wang , 1
Expand
  • 1. Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University,  Changchun 130012, China
  • 2. Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
  • 3. Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan

Received date: 07 Apr 2020

Accepted date: 03 Jul 2020

Published date: 15 Jun 2021

Copyright

2020 Higher Education Press

Abstract

Two-dimensional (2D) titanium carbide MXene Ti3C2 has attracted significant research interest in energy storage applications. In this study, we prepared Chl@Ti3C2 composites by simply mixing a chlorophyll derivative (e.g., zinc methyl 3-devinyl-3-hydroxymethyl- pyropheophorbide a (Chl)) and Ti3C2 in tetrahydrofuran, where the Chl molecules were aggregated among the multi-layered Ti3C2 MXene or on its surface, increasing the interlayer space of Ti3C2. The as-prepared Chl@Ti3C2 was employed as the anode material in the lithium-ion battery (LIB) with lithium metal as the cathode. The resulting LIB exhibited a higher reversible capacity and longer cycle performance than those of LIB based on pure Ti3C2, and its specific discharge capacity continuously increased along with the increasing number of cycles, which can be attributed to the gradual activation of Chl@Ti3C2 accompanied by the electrochemical reactions. The discharge capacity of 1 wt-% Chl@Ti3C2 was recorded to be 325 mA·h·g–1 at the current density of 50 mA·g–1 with a Coulombic efficiency of 56% and a reversible discharge capacity of 173 mA·h·g–1 at the current density of 500 mA·g–1 after 800 cycles. This work provides a novel strategy for improving the energy storage performance of 2D MXene materials by expanding the layer distance with organic dye aggregates.

Cite this article

Wenxin Xu , Xin Zhao , Jiali Tang , Chao Zhang , Yu Gao , Shin-ichi Sasaki , Hitoshi Tamiaki , Aijun Li , Xiao-Feng Wang . Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(3) : 709 -716 . DOI: 10.1007/s11705-020-1984-z

Acknowledgements

The authors thank Dr. Yohan Dall’Agnese for reading the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 11974129) to Xiao-Feng Wang, the Fundamental Research Funds for the Central Universities, Jilin University, the Science and Technology Development Plan of Jilin Province (Grant Nos. 20180414010GH, 20190201133JC) and Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. JP17H06436) to Hitoshi Tamiaki.
1
Ji L W, Lin Z, Alcoutlabi M, Zhang X W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011, 4(8): 2682–2699

DOI

2
Zhang C, Xie Y, Wang J, Pentecost A, Long D, Ling L, Qiao W. Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18(10): 2673–2682

DOI

3
Ferry V E, Munday J N, Atwater H A. Design considerations for plasmonic photovoltaics. Advanced Materials, 2010, 22(43): 4794–4808

DOI

4
Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657

DOI

5
Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949–2954

DOI

6
Sheng T, Xu Y F, Jiang Y X, Huang L, Tian N, Zhou Z Y, Broadwell I, Sun S G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Accounts of Chemical Research, 2016, 49(11): 2569–2577

DOI

7
Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930–2946

DOI

8
Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M. Hybrid nanostructures for energy storage applications. Advanced Materials, 2012, 24(37): 5045–5064

DOI

9
Eames C, Islam M S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 2014, 136(46): 16270–16276

DOI

10
Sun S, Liao C, Hafez A M, Zhu H, Wu S. Two-dimensional MXenes for energy storage. Chemical Engineering Journal, 2018, 338: 27–45

DOI

11
Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8(8): 2277–2282

DOI

12
Reddy M V, Subba Rao G V, Chowdari B V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews, 2013, 113(7): 5364–5457

DOI

13
Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L. Semiconductor nanowire optical antenna solar absorbers. Nano Letters, 2010, 10(2): 439–445

DOI

14
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4(1): 1716

DOI

15
Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y. Mxene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16(1): 61–64

DOI

16
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253

DOI

17
Pourali Z, Sovizi M R, Yaftian M R. Two-dimensional Ti3C2Tx/CMK-5 nanocomposite as high performance anodes for lithium batteries. Journal of Alloys and Compounds, 2018, 738: 130–137

DOI

18
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81

DOI

19
Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Applied Materials & Interfaces, 2016, 8(34): 22280–22286

DOI

20
Zhu J, Tang Y, Yang C, Wang F, Cao M. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 2016, 163(5): A785–A791

DOI

21
Wang Y, Li Y, Qiu Z, Wu X, Zhou P, Zhou T, Zhao J, Miao Z, Zhou J, Zhuo S. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6(24): 11189–11197

DOI

22
Zhang X, Zhang Z, Zhou Z. Mxene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27(1): 73–85

DOI

23
Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F. Ultrathin and flexible CNTs/MXene/Cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Letters, 2019, 11(1): 72

DOI

24
Aierken Y, Sevik C, Gülseren O, Peeters F M, Çakır D. Mxenes/graphene heterostructures for Li battery applications: a first principles study. Journal of Materials Chemistry A, 2018, 6(5): 2337–2345

DOI

25
Boota M, Pasini M, Galeotti F, Porzio W, Zhao M Q, Halim J, Gogotsi Y. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chemistry of Materials, 2017, 29(7): 2731–2738

DOI

26
Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016, 10(2): 2491–2499

DOI

27
Fan X, Liu L, Jin X, Wang W, Zhang S, Tang B. Mxene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 2019, 7(23): 14319–14327

DOI

28
Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30): 1701264

DOI

29
Dong X, Ding B, Guo H, Dou H, Zhang X. Superlithiated polydopamine derivative for high-capacity and high-rate anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 38101–38108

DOI

30
Liu K, Zheng J, Zhong G, Yang Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21(12): 4125–4131

DOI

31
Liang Y, Zhang P, Yang S, Tao Z, Chen J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Advanced Energy Materials, 2013, 3(5): 600–605

DOI

32
Ghidiu M, Kota S, Halim J, Sherwood A W, Nedfors N, Rosen J, Mochalin V N, Barsoum M W. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 2017, 29(3): 1099–1106

DOI

33
Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016, 28(7): 1517–1522

DOI

34
Sun D, Wang M, Li Z, Fan G, Fan L Z, Zhou A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47: 80–83

DOI

35
Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth A R, Schaffner K. Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochemistry and Photobiology, 1996, 63(1): 92–99

DOI

36
Du F, Tang H, Pan L, Zhang T, Lu H, Xiong J, Yang J, Zhang C. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochimica Acta, 2017, 235: 690–699

DOI

Outlines

/