Frontiers of Chemical Science and Engineering >
Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation
Received date: 07 Nov 2019
Accepted date: 24 Jan 2020
Published date: 15 Dec 2020
Copyright
Nano-zero-valent irons (nZVI) have shown great potential to function as universal and low-cost magnetic adsorbents. Yet, the rapid agglomeration and easy surface corrosion of nZVI in solution greatly hinders their overall applicability. Here, carboxylated cellulose nanocrystals (CCNC), widely available from renewable biomass resources, were prepared and applied for the immobilization of nZVI. In doing so, carboxylated cellulose nanocrystals supporting nano-zero-valent irons (CCNC-nZVI) were obtained via an in-situ growth method. The CCNC-nZVI were characterized and then evaluated for their performances in wastewater treatment. The results obtained show that nZVI nanoparticles could attach to the carboxyl and hydroxyl groups of CCNC, and well disperse on the CCNC surface with a size of ~10 nm. With the CCNC acting as corrosion inhibitors improving the reaction activity of nZVI, CCNC-nZVI exhibited an improved dispersion stability and electron utilization efficacy. The Pb(II) adsorption capacity of CCNC-nZVI reached 509.3 mg·g−1 (298.15 K, pH= 4.0), significantly higher than that of CCNC. The adsorption was a spontaneous exothermic process and could be perfectly fitted by the pseudo-second-order kinetics model. This study may provide a novel and green method for immobilizing magnetic nanomaterials by using biomass-based resources to develop effective bio-adsorbents for wastewater decontamination.
Bangxian Peng , Rusen Zhou , Ying Chen , Song Tu , Yingwu Yin , Liyi Ye . Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(6) : 1006 -1017 . DOI: 10.1007/s11705-020-1924-y
1 |
Ouni L, Ramazani A, Taghavi Fardood S. An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 2019, 13(2): 274–295
|
2 |
Fu R B, Yang Y P, Xu Z, Zhang X, Guo X P, Bi D S. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 2015, 138: 726–734
|
3 |
Chen B, Zhu C, Fei J, Jiang Y, Yin C, Su W, He X, Li Y, Chen Q, Ren Q, Chen Y. Reaction kinetics of phenols and p-nitrophenols in flowing aerated aqueous solutions generated by a discharge plasma jet. Journal of Hazardous Materials, 2019, 363: 55–63
|
4 |
Nahata M, Seo C Y, Krishnakumar P, Schwank J. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Frontiers of Chemical Science and Engineering, 2018, 12(1): 194–208
|
5 |
Yan Y, Huang P, Zhang H P. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(4): 772–783
|
6 |
Tao Q Q, Zhang X, Prabaharan K, Dai Y. Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells. Bioresource Technology, 2019, 278: 456–459
|
7 |
Zhou R S, Zhou R W, Zhang X H, Bazaka K, Ostrikov K. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(2): 340–349
|
8 |
Fu F L, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 2014, 267: 194–205
|
9 |
Yang F, Zhang S S, Sun Y Q, Cheng K, Li J S, Tsang D C W. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technology, 2018, 265: 490–497
|
10 |
Cai Z Q, Fu J, Du P H, Zhao X, Hao X D, Liu W, Zhao D Y. Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 2018, 332: 227–236
|
11 |
Dhar P, Kumar A, Katiyar V. Fabrication of cellulose nanocrystal supported stable Fe(0) nanoparticles: A sustainable catalyst for dye reduction, organic conversion and chemo-magnetic propulsion. Cellulose (London, England), 2015, 22(6): 3755–3771
|
12 |
Zhao X, Liu W, Cai Z Q, Han B, Qian T W, Zhao D Y. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 2016, 100: 245–266
|
13 |
Mu Y, Jia F, Ai Z H, Zhang L Z. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environmental Science. Nano, 2017, 4(1): 27–45
|
14 |
Liu W, Tian S T, Zhao X, Xie W B, Gong Y Y, Zhao D Y. Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: A critical review. Current Pollution Reports, 2015, 1(4): 280–291
|
15 |
Shi L N, Lin Y M, Zhang X, Chen Z L. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 2011, 171(2): 612–617
|
16 |
Horzum N, Demir M M, Nairat M, Shahwan T. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Advances, 2013, 3(21): 7828–7837
|
17 |
Dong H R, Deng J M, Xie Y K, Zhang C, Jiang Z, Cheng Y J, Hou K J, Zeng G M. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. Journal of Hazardous Materials, 2017, 332: 79–86
|
18 |
Cai Z Q, Fu J, Du P H, Zhao X, Hao X D, Liu W, Zhao D Y. Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles. Chemical Engineering Journal, 2018, 332: 227–236
|
19 |
Lv X S, Xu J, Jiang G M, Xu X H. Removal of chromium (VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 2011, 85(7): 1204–1209
|
20 |
Brinchi L, Cotana F, Fortunati E, Kenny J M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 2013, 94(1): 154–169
|
21 |
Jiang S S, Daly H, Xiang H, Yan Y, Zhang H P, Hardacre C, Fan X L. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemical. Frontiers of Chemical Science and Engineering, 2019, 13(4): 718–726
|
22 |
Islam M S, Chen L, Sisler J, Tam K C. Cellulose nanocrystal (CNC)–inorganic hybrid systems: Synthesis, properties and applications. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(6): 864–883
|
23 |
Maimaiti H, Awati A, Yisilamu G, Zhang D D, Wang S X. Synthesis and visible-light photocatalytic CO2/H2O reduction to methyl formate of TiO2 nanoparticles coated by aminated cellulose. Applied Surface Science, 2019, 466: 535–544
|
24 |
Zarei S, Niad M, Raanaei H. The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. Journal of Hazardous Materials, 2018, 344: 258–273
|
25 |
Liu H, Song J, Shang S B, Song Z Q, Wang D. Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Applied Materials & Interfaces, 2012, 4(5): 2413–2419
|
26 |
Chen L, Cao W J, Quinlan P J, Berry R M, Tam K C. Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 978–985
|
27 |
Cheng M, Qin Z Y, Chen Y Y, Liu J M, Ren Z C. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids. Cellulose (London, England), 2017, 24(8): 3243–3254
|
28 |
Avila Ramirez J A, Fortunati E, Kenny J M, Torre L, Foresti M L. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals. Carbohydrate Polymers, 2017, 157: 1358–1364
|
29 |
Lu J, Askeland P, Drzal L T. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer, 2008, 49(5): 1285–1296
|
30 |
Zhou C J, Wu Q L, Yue Y Y, Zhang Q G. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, 2011, 353(1): 116–123
|
31 |
Yu X L, Tong S R, Ge M F, Wu L Y, Zuo J C, Cao C Y, Song W G. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences (China), 2013, 25(5): 933–943
|
32 |
Zhang X, Lin S, Chen Z L, Megharaj M, Naidu R. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 2011, 45(11): 3481–3488
|
33 |
Wu L M, Liao L B, Lv G C, Qin F X, He Y J, Wang X Y. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon. Journal of Hazardous Materials, 2013, 254-255: 277–283
|
34 |
Ling L, Pan B C, Zhang W X. Removal of selenium from water with nanoscale zero-valent iron: Mechanisms of intraparticle reduction of Se (IV). Water Research, 2015, 71: 274–281
|
35 |
Gong K D, Hu Q, Xiao Y Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z H. Triple layered core-shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(VI) reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(24): 11119–11128
|
36 |
Su F C, Zhou H J, Zhang Y X, Wang G Z. Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water. Journal of Colloid and Interface Science, 2016, 478: 421–429
|
37 |
Zhang X L, Lin Q L, Luo S Y, Ruan K Z, Peng K P. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Applied Surface Science, 2018, 442: 322–331
|
38 |
Khan A, Xing J, Elseman A M, Gu P C, Gul K, Ai Y J, Jehan R, Alsaedi A, Hayat T, Wang X K. A novel magnetite nanorod-decorated Si-Schiff base complex for efficient immobilization of U(VI) and Pb(II) from water solutions. Dalton Transactions (Cambridge, England), 2018, 43(33): 11327–11336
|
39 |
Huang X, Wei D, Zhang X W, Fan D W, Sun X, Du B, Wei Q. Synthesis of amino-functionalized magnetic aerobic granular sludge-biochar for Pb(II) removal: Adsorption performance and mechanism studies. Science of the Total Environment, 2019, 685: 681–689
|
40 |
Wang N, Yang D X, Wang X X, Yu S J, Wang H Q, Wen T, Song G, Yu Z M, Wang X K. Highly efficient Pb(II) and Cu(II) removal using hollow Fe3O4@PDA nanoparticles with excellent application capability and reusability. Inorganic Chemistry Frontiers, 2018, 5(9): 2174–2182
|
41 |
Liu X J, Lai D G, Wang Y. Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. Journal of Hazardous Materials, 2019, 361: 37–48
|
42 |
Siahkamari M, Jamali A, Sabzevari A, Shakeri A. Removal of lead(II) ions from aqueous solutions using biocompatible polymeric nano-adsorbents: A comparative study. Carbohydrate Polymers, 2017, 157: 1180–1189
|
43 |
Zhao Z F, Zhang X, Zhou H J, Liu G, Kong M G, Wang G Z. Microwave-assisted synthesis of magnetic Fe3O4-mesoporous magnesium silicate core-shell composites for the removal of heavy metal ions. Microporous and Mesoporous Materials, 2017, 242: 50–58
|
44 |
Fu R B, Yang Y P, Xu Z, Zhang X, Guo X P, Bi D S. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 2015, 138: 726–734
|
45 |
Rama Chandraiah M. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alexandria Engineering Journal, 2016, 55: 619–625
|
46 |
Li X Q, Zhang W X. Equestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111(19): 6939–6946
|
47 |
Abdel-Samad H W, Watson P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH). Applied Surface Science, 1997, 108(3): 371–377
|
48 |
Noubactep C. A critical review on the process of contaminant removal in Fe0-H2O systems. Environmental Technology, 2008, 29(8): 909–920
|
49 |
Martin J E, Herzing A A, Yan W L, Li X Q, Koel B E, Kiely C J, Zhang W X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 2008, 24(8): 4329–4334
|
/
〈 | 〉 |