RESEARCH ARTICLE

Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions

  • Peng Luo ,
  • Yejun Guan ,
  • Hao Xu ,
  • Mingyuan He ,
  • Peng Wu
Expand
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

Received date: 07 Mar 2019

Accepted date: 13 Jun 2019

Published date: 15 Apr 2020

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were in situ reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this in situ recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.

Cite this article

Peng Luo , Yejun Guan , Hao Xu , Mingyuan He , Peng Wu . Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 258 -266 . DOI: 10.1007/s11705-019-1878-0

Acknowledgements

The authors gratefully acknowledge the financial support from Ministry of Science and Technology of China (Grant No. 2016YFA0202804) and the National Natural Science Foundation of China (Grant Nos. 21872052, 21533002, 21571128 and 21603075).

Electronic Supplementary Material

ƒSupplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1878-0 and is accessible for authorized users.
1
Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144

DOI

2
Wei Z H, Xia T F, Liu M H, Cao Q S, Xu Y R, Zhu K K, Zhu X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460

DOI

3
Feng C, Khulbe K, Matsuura T, Farnood R, Ismail A, Membr J. Recent progress in zeolite/zeotype membranes. Journal of Membrane Science and Research, 2015, 1(2): 49–72

4
Weckhuysen B M, Yu J H. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44(20): 7022–7024

DOI

5
Cnudde P, De Wispelaere K, Vanduyfhuys L, Demuynck R, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catalysis, 2018, 8(10): 9579–9595

DOI

6
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420

DOI

7
Tarach K A, Pyra K, Siles S, Cabrera M, Marek K G. Operando study reveals the superior cracking activity and stability of hierarchical ZSM-5 catalyst for the cracking of low-density polyethylene. ACS Sustainable Chemistry & Engineering, 2018, 12(3): 633–638

8
Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882

DOI

9
Tago T, Konno H, Nakasaka Y, Masuda T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163

DOI

10
Wang D R, Zhang L, Chen L, Wu H H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521

DOI

11
Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789

DOI

12
Zhu J, Meng X J, Xiao F S. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248

DOI

13
Möller K, Bein T. Mesoporosity—a new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707

DOI

14
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

DOI

15
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube template growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

DOI

16
Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045

DOI

17
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 118(19): 3162–3165

DOI

18
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporousity. Nature Materials, 2006, 5(3): 718–723

DOI

19
Chen H Y, Yang M F, Shang W J, Tong Y, Liu B Y, Han X L, Zhang J B, Hao Q Q, Sun M, Ma X X. Organosilane Surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966

DOI

20
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(8288): 246–249

DOI

21
Donk S V, Janssen A H, Bitter J H, Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319

DOI

22
Song B D, Li Y Q, Cao G, Sun Z H, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574

DOI

23
Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(14): 82–88

DOI

24
Verboekend D, Ramírez J P. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147

DOI

25
Ramírez J P, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(23): 3972–3979

DOI

26
Han Y, Pitukmanorom P, Zhao L, Ying J Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7(3): 326–332

DOI

27
Wang D R, Xu L, Wu P. Hierarchical, core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545

DOI

28
Peng P, Sun S Z, Liu Y X, Liu X M, Mintova S, Yan Z F. Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529(9): 283–293

DOI

29
Zuo Y, Song W, Dai C, He Y, Wang M, Wang X, Guo X. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Applied Catalysis A, General, 2013, 453(32): 272–279

DOI

30
Li C G, Lu Y Q, Wu H H, Wu P, He M Y. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chemical Communications, 2015, 51(80): 14905–14908

DOI

31
Xue T, Wang Y M, He M Y. Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sciences, 2012, 14(4): 409–418

DOI

32
Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482–500

DOI

33
Zecchina A, Bordiga S, Spoto G, Marchese L, Petrini G, Leofanti G, Padoan M. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. Journal of Physical Chemistry, 1992, 96(12): 4991–4997

DOI

34
Kustov L M, Kazansky V B, Beran S, Kubelkova L, Jiru P. Adsorption of carbon monoxide on ZSM-5 zeolites. Infrared spectroscopic study and quantum-chemical calculations. Journal of Physical Chemistry, 1987, 91(20): 5247–5251

DOI

35
Wu P, Komatsu T, Yashima T I R. IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. Journal of Physical Chemistry, 1995, 99(27): 10923–10931

DOI

36
Zecchina A, Bordiga S, Spoto G, Scarano D, Petrini G, Leofanti G, Padovan M, Arean C O. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2959–2967

DOI

37
Parry P E. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963, 2(5): 371–379

DOI

38
Franke M E, Simon U. Solvate-supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2004, 5(4): 465–472

DOI

39
Suzuki K, Aovagi Y, Katada N, Choi M, Ryoo R, Niwa M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Catalysis Today, 2008, 132(1–4): 38–45

DOI

40
Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S A. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chemistry of Materials, 2014, 26(24): 7183–7188

DOI

41
Jung J W, Jo C B, Mota F M, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A, General, 2015, 492(8): 68–75

DOI

Outlines

/