Frontiers of Chemical Science and Engineering >
Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions
Received date: 07 Mar 2019
Accepted date: 13 Jun 2019
Published date: 15 Apr 2020
Copyright
Hierarchical core/shell Zeolite Socony Mobil-five (ZSM-5) zeolite was hydrothermally postsythesized in the solution of NaOH and diammonium surfactant via a dissolution-reassembly strategy. The silica and alumina species were firstly dissolved partially from the bulky ZSM-5 crystals and then were in situ reassembled into the MFI-type nanosheets with the structure-directing effect of diammonium surfactant, attaching to the out-surface of ZSM-5 core crystals. The mesopores thus were generated in both the core and shell part, giving rise to a micropore/mesopore composite material. The micropore volume and the acidity of the resultant hybrid were well-preserved during this in situ recrystallization process. Possessing the multiple mesopores and enlarged external surface area, the core/shell ZSM-5 zeolite exhibited higher activity in the ketalation and acetalization reactions involving bulky molecules in comparison to the pristine ZSM-5.
Peng Luo , Yejun Guan , Hao Xu , Mingyuan He , Peng Wu . Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 258 -266 . DOI: 10.1007/s11705-019-1878-0
1 |
Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144
|
2 |
Wei Z H, Xia T F, Liu M H, Cao Q S, Xu Y R, Zhu K K, Zhu X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460
|
3 |
Feng C, Khulbe K, Matsuura T, Farnood R, Ismail A, Membr J. Recent progress in zeolite/zeotype membranes. Journal of Membrane Science and Research, 2015, 1(2): 49–72
|
4 |
Weckhuysen B M, Yu J H. Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 2015, 44(20): 7022–7024
|
5 |
Cnudde P, De Wispelaere K, Vanduyfhuys L, Demuynck R, Van der Mynsbrugge J, Waroquier M, Van Speybroeck V. How chain length and branching influence the alkene cracking reactivity on H-ZSM-5. ACS Catalysis, 2018, 8(10): 9579–9595
|
6 |
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420
|
7 |
Tarach K A, Pyra K, Siles S, Cabrera M, Marek K G. Operando study reveals the superior cracking activity and stability of hierarchical ZSM-5 catalyst for the cracking of low-density polyethylene. ACS Sustainable Chemistry & Engineering, 2018, 12(3): 633–638
|
8 |
Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882
|
9 |
Tago T, Konno H, Nakasaka Y, Masuda T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163
|
10 |
Wang D R, Zhang L, Chen L, Wu H H, Wu P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3511–3521
|
11 |
Xu S M, Zhang X X, Cheng D G, Chen F Q, Ren X H. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
|
12 |
Zhu J, Meng X J, Xiao F S. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 2013, 7(2): 233–248
|
13 |
Möller K, Bein T. Mesoporosity—a new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707
|
14 |
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117
|
15 |
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube template growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418
|
16 |
Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
|
17 |
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites template with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 118(19): 3162–3165
|
18 |
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporousity. Nature Materials, 2006, 5(3): 718–723
|
19 |
Chen H Y, Yang M F, Shang W J, Tong Y, Liu B Y, Han X L, Zhang J B, Hao Q Q, Sun M, Ma X X. Organosilane Surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Industrial & Engineering Chemistry Research, 2018, 57(32): 10956–10966
|
20 |
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(8288): 246–249
|
21 |
Donk S V, Janssen A H, Bitter J H, Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
|
22 |
Song B D, Li Y Q, Cao G, Sun Z H, Han X. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574
|
23 |
Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, 2013, 167(14): 82–88
|
24 |
Verboekend D, Ramírez J P. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(4): 1137–1147
|
25 |
Ramírez J P, Verboekend D, Bonilla A, Abello S. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(23): 3972–3979
|
26 |
Han Y, Pitukmanorom P, Zhao L, Ying J Y. Generalized synthesis of mesoporous shells on zeolite crystals. Small, 2011, 7(3): 326–332
|
27 |
Wang D R, Xu L, Wu P. Hierarchical, core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt nanoparticles for bifunctional hydrocracking. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(37): 15535–15545
|
28 |
Peng P, Sun S Z, Liu Y X, Liu X M, Mintova S, Yan Z F. Combined alkali dissolution and re-assembly approach toward ZSM-5 mesostructures with extended lifetime in cumene cracking. Journal of Colloid and Interface Science, 2018, 529(9): 283–293
|
29 |
Zuo Y, Song W, Dai C, He Y, Wang M, Wang X, Guo X. Modification of small-crystal titanium silicalite-1 with organic bases: Recrystallization and catalytic properties in the hydroxylation of phenol. Applied Catalysis A, General, 2013, 453(32): 272–279
|
30 |
Li C G, Lu Y Q, Wu H H, Wu P, He M Y. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes. Chemical Communications, 2015, 51(80): 14905–14908
|
31 |
Xue T, Wang Y M, He M Y. Synthesis of ultra-high-silica ZSM-5 zeolites with tunable crystal sizes. Solid State Sciences, 2012, 14(4): 409–418
|
32 |
Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482–500
|
33 |
Zecchina A, Bordiga S, Spoto G, Marchese L, Petrini G, Leofanti G, Padoan M. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. Journal of Physical Chemistry, 1992, 96(12): 4991–4997
|
34 |
Kustov L M, Kazansky V B, Beran S, Kubelkova L, Jiru P. Adsorption of carbon monoxide on ZSM-5 zeolites. Infrared spectroscopic study and quantum-chemical calculations. Journal of Physical Chemistry, 1987, 91(20): 5247–5251
|
35 |
Wu P, Komatsu T, Yashima T I R. IR and MAS NMR studies on the incorporation of aluminum atoms into defect sites of dealuminated mordenites. Journal of Physical Chemistry, 1995, 99(27): 10923–10931
|
36 |
Zecchina A, Bordiga S, Spoto G, Scarano D, Petrini G, Leofanti G, Padovan M, Arean C O. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2959–2967
|
37 |
Parry P E. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963, 2(5): 371–379
|
38 |
Franke M E, Simon U. Solvate-supported proton transport in zeolites. Physical Chemistry Chemical Physics, 2004, 5(4): 465–472
|
39 |
Suzuki K, Aovagi Y, Katada N, Choi M, Ryoo R, Niwa M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica-alumina. Catalysis Today, 2008, 132(1–4): 38–45
|
40 |
Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S A. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant. Chemistry of Materials, 2014, 26(24): 7183–7188
|
41 |
Jung J W, Jo C B, Mota F M, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A, General, 2015, 492(8): 68–75
|
/
〈 | 〉 |