REVIEW ARTICLE

Enhanced penetration strategies for transdermal delivery

  • Qiaofei Pan 1 ,
  • Yinglin Yu 1 ,
  • Dong Chen 2 ,
  • Genlong Jiao , 3 ,
  • Xiaowen Liu , 1
Expand
  • 1. Pharmacology, Department of Basic Medical Sciences, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
  • 2. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
  • 3. Department of Orthopaedics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China

Received date: 12 May 2019

Accepted date: 04 Dec 2019

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

Transdermal delivery offers several advantages in drug distribution, including convenience, painless administration, avoidance of first-pass metabolism, and ease of termination. However, the natural protective barriers of the skin, such as the stratum corneum, the topmost layer of skin, limit the systemic absorption of external therapeutics via transdermal delivery. Therefore, extensive application of transdermal delivery in medical treatment has been limited. Over the past few years, many formulation strategies and physical technologies, therefore, have been developed to enhance transdermal delivery. This review summarizes various formulation strategies proposed for transdermal delivery and their application in medical treatment.

Cite this article

Qiaofei Pan , Yinglin Yu , Dong Chen , Genlong Jiao , Xiaowen Liu . Enhanced penetration strategies for transdermal delivery[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(3) : 378 -388 . DOI: 10.1007/s11705-019-1913-1

Acknowledgements

Xiaowen Liu acknowledges support by the startup funding from Jinan University and the Fundamental Research Funds for the Central Universities (No. 11618337), the National Natural Science Foundation of China (Grant No. 81903546).
1
Jin J F, Zhu L L, Xu H M, Wang H F, Feng X Q, Zhu X P, Zhou Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Preference and Adherence, 2015, 9: 923–942

2
Rowland M. Influence of route of administration on drug availability. Journal of Pharmaceutical Sciences, 1972, 61(1): 70–74

DOI

3
Duchěne D, Touchard F, Peppas N. Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Development and Industrial Pharmacy, 1988, 14(2-3): 283–318

DOI

4
Prausnitz M R, Langer R. Transdermal drug delivery. Nature Biotechnology, 2008, 26(11): 1261–1268

DOI

5
Prausnitz M R, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews. Drug Discovery, 2004, 3(2): 115–124

DOI

6
Kalluri H, Banga A K. Transdermal delivery of proteins. AAPS PharmSciTech, 2011, 12(1): 431–441

DOI

7
Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics, 2019, 555: 49–62

DOI

8
Alkilani A, McCrudden M T, Donnelly R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4): 438–470

DOI

9
Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, Liu S, Zhang M, Wen L P. Transdermal protein delivery by a coadministered peptide identified via phage display. Nature Biotechnology, 2006, 24(4): 455–460

DOI

10
Lopes L B, Garcia M T J, Bentley M V L. Chemical penetration enhancers. Therapeutic Delivery, 2015, 6(9): 1053–1061

DOI

11
Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian Journal of Pharmaceutical Sciences, 2014, 9(2): 51–64

DOI

12
Pham Q D, Björklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum—relation between molecular effects and barrier function. Journal of Controlled Release, 2016, 232: 175–187

DOI

13
Tscheik C, Blasig I E, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers, 2013, 1(2): e24565

DOI

14
Pathan I B, Setty C M. Chemical penetration enhancers for transdermal drug delivery systems. Tropical Journal of Pharmaceutical Research, 2009, 8(2): 173–179

DOI

15
Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4688–4693

DOI

16
Haque T, Talukder M M U. Chemical Enhancer: A simplistic way to modulate barrier function of the stratum corneum. Advanced Pharmaceutical Bulletin, 2018, 8(2): 169–179

DOI

17
Ibrahim S A, Li S K. Efficiency of fatty acids as chemical penetration enhancers: Mechanisms and structure enhancement relationship. Pharmaceutical Research, 2010, 27(1): 115–125

DOI

18
Lane M E. Skin penetration enhancers. International Journal of Pharmaceutics, 2013, 447(1-2): 12–21

DOI

19
Kandimalla K, Kanikkannan N, Andega S, Singh M. Effect of Fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo. Journal of Pharmacy and Pharmacology, 1999, 51(7): 783–790

DOI

20
Aungst B J J, Rogers N, Shefter E. Enhancement of naloxone penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. International Journal of Pharmaceutics, 1986, 33(1): 225–234

DOI

21
Aungst B J. Structure/Effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharmaceutical Research, 1989, 6(3): 244–247

DOI

22
Ongpipattanakul B, Burnette R R, Potts R O, Francoeur M L. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharmaceutical Research, 1991, 8(3): 350–354

DOI

23
Babu R J, Chen L, Kanikkannan N. Fatty alcohols, fatty acids, and fatty acid esters as penetration enhancers. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2015, 133–150

24
Parivesh S, Sumeet D, Abhishek D. Design, evaluation, parameters and marketed products of transdermal patches: A review. Journal of Pharmacy Research, 2010, 3(2): 235–240

25
Jordan W P Jr, Atkinson L E, Lai C. Comparison of the skin irritation potential of two testosterone transdermal systems: An investigational system and a marketed product. Clinical Therapeutics, 1998, 20(1): 80–87

DOI

26
Williams A C, Barry B W. Penetration enhancers. Advanced Drug Delivery Reviews, 2012, 64(Suppl): 128–137

DOI

27
Liu P, Cettina M, Wong J. Effects of isopropanol-isopropyl myristate binary enhancers on in vitro transport of estradiol in human epidermis: A mechanistic evaluation. Journal of Pharmaceutical Sciences, 2009, 98(2): 565–572

DOI

28
Watkinson R M, Herkenne C, Guy R H, Hadgraft J, Oliveira G, Lane M E. Influence of ethanol on the solubility, ionization and permeation characteristics of Ibuprofen in silicone and human skin. Skin Pharmacology and Physiology, 2009, 22(1): 15–21

DOI

29
Wischke C, Schwendeman S P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. International Journal of Pharmaceutics, 2008, 364(2): 298–327

DOI

30
Andega S, Kanikkannan N, Singh M. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. Journal of Controlled Release, 2001, 77(1): 17–25

DOI

31
Dias M, Naik A, Guy R H, Hadgraft J, Lane M E. In vivo infrared spectroscopy studies of alkanol effects on human skin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3): 1171–1175

DOI

32
Jampilek J, Brychtova K. Azone analogues: Classification, design, and transdermal penetration principles. Medicinal Research Reviews, 2012, 32(5): 907–947

DOI

33
Harrison J E, Watkinson A C, Green D M, Hadgraft J, Brain K. The relative effect of azone and transcutol on permeant diffusivity and solubility in human stratum corneum. Pharmaceutical Research, 1996, 13(4): 542–546

DOI

34
Harrison J E, Groundwater P W, Brain K R, Hadgraft J. Azone® induced fluidity in human stratum corneum. A fourier transform infrared spectroscopy investigation using the perdeuterated analogue. Journal of Controlled Release, 1996, 41(3): 283–290

DOI

35
Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery. International Journal of Pharmaceutics, 1999, 184(1): 1–6

DOI

36
Hadgraft J, Peck J, Williams D G, Pugh W J, Allan G. Mechanisms of action of skin penetration enhancers/retarders: Azone and analogues. International Journal of Pharmaceutics, 1996, 141(1): 17–25

DOI

37
Zou L L, Ma J L, Wang T, Yang T B, Liu C B. Cell-penetrating peptide-mediated therapeutic molecule delivery into the central nervous system. Current Neuropharmacology, 2013, 11(2): 197–208

DOI

38
Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 2015, 10(10): e0139652

DOI

39
Liu X, Zhang P, Rödl W, Maier K, Lächelt U, Wagner E. Toward artificial immunotoxins: Traceless reversible conjugation of RNase A with receptor targeting and endosomal escape domains. Molecular Pharmaceutics, 2017, 14(5): 1439–1449

DOI

40
Wagner E, Zenke M, Cotten M, Beug H, Birnstiel M L. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(9): 3410–3414

DOI

41
Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572

DOI

42
Erazo-Oliveras A, Najjar K, Dayani L, Wang T Y, Johnson G A, Pellois J P. Protein delivery into live cells by incubation with an endosomolytic agent. Nature Methods, 2014, 11(8): 861–867

DOI

43
Kamada H, Okamoto T, Kawamura M, Shibata H, Abe Y, Ohkawa A, Nomura T, Sato M, Mukai Y, Sugita T, et al. Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biological & Pharmaceutical Bulletin, 2007, 30(2): 218–223

DOI

44
Tang H, Yin L, Kim K H, Cheng J. Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science (Cambridge), 2013, 4(10): 3839–3844

DOI

45
Lozano M V, Lollo G, Alonso-Nocelo M, Brea J, Vidal A, Torres D, Alonso M J. Polyarginine nanocapsules: A new platform for intracellular drug delivery. Journal of Nanoparticle Research, 2013, 15(3): 1515

DOI

46
Rothbard J B, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane P L, Wender P A, Khavari P A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nature Medicine, 2000, 6(11): 1253–1257

DOI

47
Kim Y C, Ludovice P J, Prausnitz M R. Transdermal delivery enhanced by magainin pore-forming peptide. Journal of Controlled Release, 2007, 122(3): 375–383

DOI

48
Jung E, Lee J, Park J, Park D. Transdermal delivery of interferon-g (IFN-g) mediated by penetratin, a cell-permeable peptide. Biotechnology and Applied Biochemistry, 2005, 42(2): 169–173

DOI

49
Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38): 15816–15821

DOI

50
Lin C M, Huang K, Zeng Y, Chen X C, Wang S, Li Y. A simple, noninvasive and efficient method for transdermal delivery of siRNA. Archives of Dermatological Research, 2012, 304(2): 139–144

DOI

51
Candan G, Michiue H, Ishikawa S, Fujimura A, Hayashi K, Uneda A, Mori A, Ohmori I, Nishiki T I, Matsui H, Tomizawa K. Combining poly-arginine with the hydrophobic counter-anion 4-(1-pyrenyl)-butyric acid for protein transduction in transdermal delivery. Biomaterials, 2012, 33(27): 6468–6475

DOI

52
Gautam A, Nanda J S, Samuel J S, Kumari M, Priyanka P, Bedi G, Nath S K, Mittal G, Khatri N, Raghava G P S. Topical delivery of protein and peptide esing novel cell penetrating peptide IMT-P8. Scientific Reports, 2016, 6(1): 26278

DOI

53
Zhang T, Qu H, Li X, Zhao B, Zhou J, Li Q, Sun M. Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. Journal of Pharmaceutical Sciences, 2010, 99(12): 4880–4891

DOI

54
Chang M, Li X, Sun Y, Cheng F, Wang Q, Xie X, Zhao W, Tian X. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin. Molecular Pharmaceutics, 2013, 10(3): 951–957

DOI

55
Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2001, 1514(2): 191–205

DOI

56
Cevc G, Schätzlein A, Blume G. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. Journal of Controlled Release, 1995, 36(1): 3–16

DOI

57
Al Shuwaili A H, Rasool B K A, Abdulrasool A A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102: 101–114

DOI

58
Benson H A. Transfersomes for transdermal drug delivery. Expert Opinion on Drug Delivery, 2006, 3(6): 727–737

DOI

59
Jain S, Jain P, Umamaheshwari R, Jain N. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation. Drug Development and Industrial Pharmacy, 2003, 29(9): 1013–1026

DOI

60
Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clinical Pharmacokinetics, 2003, 42(5): 461–474

DOI

61
Rai S, Pandey V, Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Reviews & Experiments, 2017, 8(1): 1325708

DOI

62
Wang J, Wei Y, Fei Y R, Fang L, Zheng H S, Mu C F, Li F Z, Zhang Y S. Preparation of mixed monoterpenes edge activated PEGylated transfersomes to improve the in vivo transdermal delivery efficiency of sinomenine hydrochloride. International Journal of Pharmaceutics, 2017, 533(1): 266–274

DOI

63
Liu J, Li W, Teng H, Lin Z. Immunopharmacological action of sinomenine, an alkaloid isolated from Sinomenium acutum, and its mechanism of action in treating rheumatoid arthritis. Acta Pharmaceutica Sinica, 2005, 40(2): 127–131 (in Chinese)

64
Feng H, Yamaki K, Takano H, Inoue K, Yanagisawa R, Yoshino S. Effect of sinomenine on collagen-induced arthritis in mice. Autoimmunity, 2007, 40(7): 532–539

DOI

65
Han W, Li W, Wang X, Zhang H, Sun Y, Hao B. Preparation of sinomenine hydrochloride loaded nano flexible liposomes and their characteristics. Chinese Traditional and Herbal Drugs, 2011, 42(4): 671–675 (in Chinese)

66
Ward A, Clissold S P. Pentoxifylline. Drugs, 1987, 34(1): 50–97

DOI

67
Smith R V, Waller E S, Doluisio J T, Bauza M T, Puri S K, Ho I, Lassman H B. Pharmacokinetics of orally administered pentoxifylline in humans. Journal of Pharmaceutical Sciences, 1986, 75(1): 47–52

DOI

68
Rames A, Poirier J M, LeCoz F, Midavaine M, Lecocq B, Grange J D, Poupon R, Cheymol G, Jaillon P. Pharmacokinetics of intravenous and oral pentoxifylline in healthy volunteers and in cirrhotic patients. Clinical Pharmacology and Therapeutics, 1990, 47(3): 354–359

DOI

69
Bryce T, Chamberlain J, Hillbeck D, Macdonald C. Metabolism and pharmacokinetics of 14C-pentoxifylline in healthy volunteers. Arzneimittel-Forschung, 1989, 39(4): 512–517

70
Jiang T, Wang T, Li T, Ma Y, Shen S, He B, Mo R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano, 2018, 12(10): 9693–9701

DOI

71
Bangham A D, Horne R. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology, 1964, 8(5): 660–668

DOI

72
Petersen A L, Hansen A E, Gabizon A, Andresen T L. Liposome imaging agents in personalized medicine. Advanced Drug Delivery Reviews, 2012, 64(13): 1417–1435

DOI

73
Zhang P, He D, Klein P M, Liu X, Röder R, Döblinger M, Wagner E. Enhanced intracellular protein transduction by sequence defined tetra-oleoyl oligoaminoamides targeted for cancer therapy. Advanced Functional Materials, 2015, 25(42): 6627–6636

DOI

74
Eloy J O, Claro de Souza M, Petrilli R, Barcellos J P A, Lee R J, Marchetti J M. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces. B, Biointerfaces, 2014, 123: 345–363

DOI

75
Duong A D, Collier M A, Bachelder E M, Wyslouzil B E, Ainslie K M. One step encapsulation of small molecule drugs in liposomes via electrospray-remote loading. Molecular Pharmaceutics, 2016, 13(1): 92–99

DOI

76
Huwyler J, Wu D, Pardridge W M. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 14164–14169

DOI

77
Gregoriadis G, Neerunjun D E. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. European Journal of Biochemistry, 1974, 47(1): 179–185

DOI

78
Tan M L, Choong P F, Dass C R. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides, 2010, 31(1): 184–193

DOI

79
Chatin B, Mével M, Devallière J, Dallet L, Haudebourg T, Peuziat P, Colombani T, Berchel M, Lambert O, Edelman A, Pitard B. Liposome-based formulation for intracellular delivery of functional proteins. Molecular Therapy. Nucleic Acids, 2015, 4: e244

DOI

80
Rahimpour Y, Hamishehkar H. Liposomes in cosmeceutics. Expert Opinion on Drug Delivery, 2012, 9(4): 443–455

DOI

81
Sacha M, Faucon L, Hamon E, Ly I, Haltner-Ukomadu E. Ex vivo transdermal absorption of a liposome formulation of diclofenac. Biomedicine and Pharmacotherapy, 2019, 111: 785–790

DOI

82
Yang G, Lee H E, Shin S W, Um S H, Lee J D, Kim K B, Kang H C, Cho Y Y, Lee H S, Lee J Y. Efficient transdermal delivery of DNA nanostructures alleviates atopic dermatitis symptoms in NC/Nga mice. Advanced Functional Materials, 2018, 28(40): 1801918

DOI

83
Yamazaki N, Sugimoto T, Fukushima M, Teranishi R, Kotaka A, Shinde C, Kumei T, Sumida Y, Munekata Y, Maruyama K I, et al. Dual-stimuli responsive liposomes using pH- and temperature-sensitive polymers for controlled transdermal delivery. Polymer Chemistry, 2017, 8(9): 1507–1518

DOI

84
Donnelly R F, Singh T R R, Woolfson A D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Delivery, 2010, 17(4): 187–207

DOI

85
Larrañeta E, McCrudden M T C, Courtenay A J, Donnelly R F. Microneedles: A new frontier in nanomedicine delivery. Pharmaceutical Research, 2016, 33(5): 1055–1073

DOI

86
Liu X, Wang C, Liu Z. Protein-engineered biomaterials for cancer theranostics. Advanced Healthcare Materials, 2018, 7(20): 1800913

DOI

87
Ye Y, Yu J, Wen D, Kahkoska A R, Gu Z. Polymeric microneedles for transdermal protein delivery. Advanced Drug Delivery Reviews, 2018, 127: 106–118

DOI

88
Waghule T, Singhvi G, Dubey S K, Pandey M M, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine and Pharmacotherapy, 2019, 109: 1249–1258

DOI

89
Larrañeta E, Lutton R E M, Woolfson A D, Donnelly R F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering R Reports, 2016, 104: 1–32

DOI

90
Moffatt K, Wang Y, Raj Singh T R, Donnelly R F. Microneedles for enhanced transdermal and intraocular drug delivery. Current Opinion in Pharmacology, 2017, 36: 14–21

DOI

91
McGrath M G, Vrdoljak A, O’Mahony C, Oliveira J C, Moore A C, Crean A M. Determination of parameters for successful spray coating of silicon microneedle arrays. International Journal of Pharmaceutics, 2011, 415(1): 140–149

DOI

92
Vrdoljak A, McGrath M G, Carey J B, Draper S J, Hill A V S, O’Mahony C, Crean A M, Moore A C. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. Journal of Controlled Release, 2012, 159(1): 34–42

DOI

93
Gill H S, Prausnitz M R. Coated microneedles for transdermal delivery. Journal of Controlled Release, 2007, 117(2): 227–237

DOI

94
Chen X, Corbett H J, Yukiko S R, Raphael A P, Fairmaid E J, Prow T W, Brown L E, Fernando G J P, Kendall M A F. Site-selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin. Advanced Functional Materials, 2011, 21(3): 464–473

DOI

95
Baek S H, Shin J H, Kim Y C. Drug-coated microneedles for rapid and painless local anesthesia. Biomedical Microdevices, 2017, 19(1): 2

DOI

96
Boehm R D, Miller P R, Hayes S L, Monteiro-Riviere N A, Narayan R J. Modification of microneedles using inkjet printing. AIP Advances, 2011, 1(2): 022139

DOI

97
Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H, Chen H, Zhang Q, Wang L, Pan X, Wu C. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. International Journal of Pharmaceutics, 2017, 534(1-2): 378–386

DOI

98
Wang C, Ye Y, Hochu G M, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of Anti-PD1 antibody. Nano Letters, 2016, 16(4): 2334–2340

DOI

99
Johnson A R, Caudill C L, Tumbleston J R, Bloomquist C J, Moga K A, Ermoshkin A, Shirvanyants D, Mecham S J, Luft J C, De Simone J M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One, 2016, 11(9): e0162518

DOI

100
Caudill C L, Perry J L, Tian S, Luft J C, Desimone J M. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. Journal of Controlled Release, 2018, 284: 122–132

DOI

101
Chen M C, Huang S F, Lai K Y, Ling M H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials, 2013, 34(12): 3077–3086

DOI

102
Prausnitz M R, Mikszta J A, Cormier M, Andrianov A K. Microneedle-based Vaccines. Springer Berlin Heidelberg location: Springer Berlin Heidelberg, 2009, 369–393

103
Cheng G, Davoudi Z, Xing X, Yu X, Cheng X, Li Z, Deng H, Wang Q. Advanced silk fibroin biomaterials for cartilage regeneration. ACS Biomaterials Science & Engineering, 2018, 4(8): 2704–2715

DOI

104
Zhan Y, Zeng W, Jiang G, Wang Q, Shi X, Zhou Z, Deng H, Du Y. Construction of lysozyme exfoliated rectorite-based electrospun nanofibrous membranes for bacterial inhibition. Journal of Applied Polymer Science, 2015, 132(8): 41496

DOI

105
Xin S, Li X, Wang Q, Huang R, Xu X, Lei Z, Deng H. Novel layer-by-layer structured nanofibrous mats coated by protein films for dermal regeneration. Journal of Biomedical Nanotechnology, 2014, 10(5): 803–810

DOI

Outlines

/