REVIEW ARTICLE

Mechanistic understanding of Cu-based bimetallic catalysts

  • You Han 1,2 ,
  • Yulian Wang 1 ,
  • Tengzhou Ma 1 ,
  • Wei Li 1 ,
  • Jinli Zhang , 1,3 ,
  • Minhua Zhang , 1,4
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China
  • 3. School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
  • 4. Key Laboratory for Green Chemical Technology of Ministry of Education, Research and Development Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China

Received date: 05 Jun 2019

Accepted date: 19 Sep 2019

Published date: 15 Oct 2020

Copyright

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Copper has received extensive attention in the field of catalysis due to its rich natural reserves, low cost, and superior catalytic performance. Herein, we reviewed two modification mechanisms of co-catalyst on the coordination environment change of Cu-based catalysts: (1) change the electronic orbitals and geometric structure of Cu without any catalytic functions; (2) act as an additional active site with a certain catalytic function, as well as their catalytic mechanism in major reactions, including the hydrogenation to alcohols, dehydrogenation of alcohols, water gas shift reaction, reduction of nitrogenous compounds, electrocatalysis and others. The influencing mechanisms of different types of auxiliary metals on the structure-activity relationship of Cu-based catalysts in these reactions were especially summarized and discussed. The mechanistic understanding can provide significant guidance for the design and controllable synthesis of novel Cu-based catalysts used in many industrial reactions.

Cite this article

You Han , Yulian Wang , Tengzhou Ma , Wei Li , Jinli Zhang , Minhua Zhang . Mechanistic understanding of Cu-based bimetallic catalysts[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(5) : 689 -748 . DOI: 10.1007/s11705-019-1902-4

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21576205). The authors also thank Prof. Jinlong Gong in School of Chemical Engineering and Technology, Tianjin University for his helpful suggestions and comments in the preparation of this manuscript.
1
Giraldo L, Camargo G, Tirano J, Moreno-Pirajan J C. Synthesis of fatty alcohols from oil palm using a catalyst of Ni–Cu supported onto zeolite. E-Journal of Chemistry, 2010, 7(4): 1138–1147

DOI

2
Huang Y, Ariga H, Zheng X, Duan X, Takakusagi S, Asakura K, Yuan Y. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2013, 307: 74–83

DOI

3
Jia Y, Liu H. Selective hydrogenolysis of sorbitol to ethylene glycol and propylene glycol on ZrO2-supported bimetallic Pd–Cu catalysts. Chinese Journal of Catalysis, 2015, 36(9): 1552–1559

DOI

4
Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J A. Cu/Pd cooperative catalysis for enantioselective allylboration of alkenes. Journal of the American Chemical Society, 2015, 137(43): 13760–13763

DOI

5
Shimizu K, Shimura K, Nishimura M, Satsuma A. Silver cluster-promoted heterogeneous copper catalyst for N-alkylation of amines with alcohols. RSC Advances, 2011, 1(7): 1310–1317

DOI

6
Su J, Hua R. One-pot approach to 4-Vinyl-1,2,3-Triazoles by cycloaddition of azides with propargyl alcohols catalyzed by Cu(I)/Ru(III)/TFA. Current Organic Synthesis, 2012, 9(6): 898–902

DOI

7
Tang J, Biafora A, Goossen L J. Catalytic decarboxylative cross-coupling of aryl chlorides and benzoates without activating ortho substituents. Angewandte Chemie International Edition, 2015, 54(44): 13130–13133

DOI

8
Wolfbeisser A, Kovacs G, Kozlov S M, Foettinger K, Bernardi J, Kloetzer B, Neyman K M, Rupprechter G. Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study. Catalysis Today, 2017, 283: 134–143

DOI

9
Yan L, Tian S, Zhou J, Yuan X. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: Parameters and conditions. Frontiers of Environmental Science & Engineering, 2016, 10(6): 141–148

DOI

10
Wang Y, Sang S, Zhu W, Gao L, Xiao G. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone. Chemical Engineering Journal, 2016, 299: 104–111

DOI

11
Sharma R, Vishwakarma R A, Bharate S B. Bimetallic Cu-Mn-catalyzed synthesis of 2-arylquinazolin-4(3H)-ones: Aqueous ammonia as source of a ring nitrogen atom. European Journal of Organic Chemistry, 2016, 2016(31): 5227–5233

DOI

12
Safa K D, Mousazadeh H. A simple and efficient synthesis of organosilicon compounds containing 1,2,3-triazole moieties catalyzed by ZSM-5 zeolite-supported Cu–Co bimetallic oxides. Monatshefte für Chemie, 2016, 147(11): 1951–1961

DOI

13
Ma X, Chi H, Yue H, Zhao Y, Xu Y, Lv J, Wang S, Gong J. Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(7): 2530–2539

DOI

14
Zhao S, Yue H, Zhao Y, Wang B, Geng Y, Lv J, Wang S, Gong J, Ma X. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. Journal of Catalysis, 2013, 297: 142–150

DOI

15
Shen Y, Meng Q, Huang S, Wang S, Gong J, Ma X. Reaction mechanism of dimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations. RSC Advances, 2012, 2(18): 7109–7119

DOI

16
Janczarek M, Wei Z, Endo M, Ohtani B, Kowalska E. Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. Journal of Photonics for Energy, 2016, 7(1): 012008

DOI

17
Li Z B, Wang X, Zhou R X, Wang Y, Li Y. Surface modification in Cu–Ag codoped TiO2: The first-principle calculation. Wuli Xuebao, 2017, 66(11): 261–269

18
Monga A, Bathla A, Pal B. A Cu–Au bimetallic co-catalysis for the improved photocatalytic activity of TiO2 under visible light radiation. Solar Energy, 2017, 155: 1403–1410

DOI

19
Rahmatolahzadeh R, Ebadi M, Motevalli K. Preparation and characterization of Cu clusters and Cu–Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science Materials in Electronics, 2017, 28(8): 6056–6063

DOI

20
Wang Y, Su Q, Ye Q, Zhou F, Zhang Y. Polyelectrolyte brushes as efficient platform for synthesis of Cu and Pt bimetallic nanocrystals onto TiO2 nanowires. Surface and Interface Analysis, 2017, 49(9): 904–909

DOI

21
Riaz N, Chong F K, Man Z B, Sarwar R, Farooq U, Khan A, Khan M S. Preparation, characterization and application of Cu–Ni/TiO2 in Orange II photodegradation under visible light: Effect of different reaction parameters and optimization. RSC Advances, 2016, 6(60): 55650–55665

DOI

22
Zhu S, Xie X, Chen S C, Tong S, Lu G, Pui D Y H, Sun J. Cu–Ni nanowire-based TiO2 hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light. Applied Surface Science, 2017, 408: 117–124

DOI

23
Wang T, Wei Y, Chang X, Li C, Li A, Liu S, Zhang J, Gong J. Homogeneous Cu2O p-n junction photocathodes for solar water splitting. Applied Catalysis B: Environmental, 2018, 226: 31–37

DOI

24
Kavian S, Azizi S N, Ghasemi S. Fabrication of novel nanozeolite-supported bimetallic Pt–Cu nanoparticles modified carbon paste electrode for electrocatalytic oxidation of formaldehyde. International Journal of Hydrogen Energy, 2016, 41(32): 14026–14035

DOI

25
Fuerte A, Valenzuela R X, Escudero M J, Daza L. Study of a SOFC with a bimetallic Cu–Co-ceria anode directly fuelled with simulated biogas mixtures. International Journal of Hydrogen Energy, 2014, 39(8): 4060–4066

DOI

26
Kaur G, Basu S. Performance studies of copper-iron/ceria-yttria stabilized zirconia anode for electro-oxidation of butane in solid oxide fuel cells. Journal of Power Sources, 2013, 241: 783–790

DOI

27
Chang X, Wang T, Zhao Z J, Yang P, Greeley J, Mu R, Zhang G, Gong Z, Luo Z, Chen J, Cui Y, Ozin G A, Gong J. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angewandte Chemie International Edition, 2018, 57(47): 15415–15419

DOI

28
Long J, Yang P, Zhao Z, Chang X, Zha S, Zhang G, Mu R. The functionality of surface hydroxyls on selectivity and activity of CO2 reduction over Cu2O in aqueous solutions. Angewandte Chemie International Edition, 2018, 57(26): 7724–7728

DOI

29
Gawande M B, Goswami A, Felpin F X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma R S. Cu and Cu-based nanoparticles: Synthesis and applications in review catalysis. Chemical Reviews, 2016, 116(6): 3722–3811

DOI

30
Ahmed A, Elvati P, Violi A. Size-and phase-dependent structure of copper(II) oxide nanoparticles. RSC Advances, 2015, 5(44): 35033–35041

DOI

31
Baig N B R, Varma R S. Copper modified magnetic bimetallic nano-catalysts ligand regulated catalytic activity. Current Organic Chemistry, 2013, 17(20): 2227–2237

DOI

32
Evano G, Blanchard N, Toumi M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chemical Reviews, 2008, 108(8): 3054–3131

DOI

33
Li G, Li X H, Zhang Z J. Preparation methods of copper nanomaterials. Pragress in Chemistry, 2011, 23(8): 1644–1656 (in Chinese)

34
Mondal J, Biswas A, Chiba S, Zhao Y. Cu(0) nanoparticles deposited on nanoporous polymers: A recyclable heterogeneous nanocatalyst for ullmann coupling of aryl halides with amines in water. Scientific Reports, 2015, 5(1): 8294

DOI

35
Patra A K, Dutta A, Bhaumik A. Cu nanorods and nanospheres and their excellent catalytic activity in chemoselective reduction of nitrobenzenes. Catalysis Communications, 2010, 11(7): 651–655

DOI

36
Guo Y, Lin J, Li C, Lu S, Zhao C. Copper manganese oxides supported on multi-walled carbon nanotubes as an efficient catalyst for low temperature CO oxidation. Catalysis Letters, 2016, 146(11): 2364–2375

DOI

37
Allen S E, Walvoord R R, Padilla-Salinas R, Kozlowski M C. Aerobic copper-catalyzed organic reactions. Chemical Reviews, 2013, 113(8): 6234–6458

DOI

38
Vasileff A, Xu C, Jiao Y, Zheng Y, Qiao S Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem, 2018, 4(8): 1809–1831

DOI

39
Li M M J, Tsang S C E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: A mini-review and prospects. Catalysis Science & Technology, 2018, 8(14): 3450–3464

DOI

40
Jablonska M, Palkovits R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-recent trends and open challenges. Applied Catalysis B: Environmental, 2016, 181: 332–351

DOI

41
Thakur D S, Kundu A. Catalysts for fatty alcohol production from renewable resources. Journal of the American Oil Chemists’ Society, 2016, 93(12): 1575–1593

DOI

42
Deka P, Borah B J, Saikia H, Bharali P. Cu-based nanoparticles as emerging environmental catalysts. Chemical Record (New York, N.Y.), 2018, 19(2-3): 1–13

43
Liao F, Lo T W B, Tsang S C E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem, 2015, 7(14): 1998–2014

DOI

44
Zhang M, Yao R, Jiang H, Li G, Chen Y. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface. Applied Surface Science, 2017, 412: 342–349

DOI

45
Zhang M, Yao R, Jiang H, Li G, Chen Y. Catalytic activity of transition metal doped Cu(111) surfaces for ethanol synthesis from acetic acid hydrogenation: A DFT study. RSC Advances, 2017, 7(3): 1443–1452

DOI

46
Liu J, Lyu H, Chen Y, Li G, Jiang H, Zhang M. Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu2In(100): A DFT study. Physical Chemistry Chemical Physics, 2017, 19(41): 28083–28097

DOI

47
Zha H, Dong X, Yu Y, Zhang M. Hydrogen-assisted versus hydroxyl-assisted CO dissociation over Co-doped Cu(111): A DFT study. Surface Science, 2018, 669: 114–120

DOI

48
Ren B, Dong X, Yu Y, Wen G, Zhang M. A density functional theory study on the carbon chain growth of ethanol formation on Cu–Co (111) and (211) surfaces. Applied Surface Science, 2017, 412: 374–384

DOI

49
Wang Q, Wang X, Liu J, Yang Y. Cu–Ni core-shell nanoparticles: Structure, stability, electronic, and magnetic properties: A spin-polarized density functional study. Journal of Nanoparticle Research, 2017, 19(2): 25

DOI

50
Guo L, Li A, An X, Cao Z, Liu N. Catalytic activity of TM@Cu-12 core shell nanoclusters for water gas shift reaction. International Journal of Hydrogen Energy, 2015, 40(26): 8330–8340

DOI

51
Wang J, Zhu H, Yu D, Chen J, Chen J, Zhang M, Wang L, Du M. Engineering the composition and structure of bimetallic Au–Cu alloy nanoparticles in carbon nanofibers: Self-supported electrode materials for electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9(23): 19756–19765

DOI

52
Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catalysis, 2016, 6(5): 2842–2851

DOI

53
Liu H, Zhang R, Yan R, Li J, Wang B, Xie K. Insight into CH4 dissociation on NiCu catalyst: A first-principles study. Applied Surface Science, 2012, 258(20): 8177–8184

DOI

54
Saqlain M A, Hussain A, Siddiq M, Leenaerts O, Leitao A A. DFT study of synergistic catalysis of the water-gas-shift reaction on Cu–Au bimetallic surfaces. ChemCatChem, 2016, 8(6): 1208–1217

DOI

55
Prieto G, Beijer S, Smith M L, He M, Au Y, Wang Z, Bruce D A, Jong K. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angewandte Chemie International Edition, 2014, 53(25): 6397–6401

DOI

56
Wang J, Zhang X, Sun Q, Chan S, Su H. Chain growth mechanism on bimetallic surfaces for higher alcohol synthesis from syngas. Catalysis Communications, 2015, 61: 57–61

DOI

57
Sun K, Zhang M, Wang L. Effects of catalyst surface and hydrogen bond on ethanol dehydrogenation to ethoxy on Cu catalysts. Chemical Physics Letters, 2013, 585: 89–94

DOI

58
Zhang M, Huang Y, Li R, Li G, Yu Y. A DFT study of ethanol adsorption and dehydrogenation on Cu/Cr2O3 Catalyst. Catalysis Letters, 2014, 144(11): 1978–1986

DOI

59
Zhang M, Li R, Yu Y. A DFT study on the structure and properties of Cu/Cr2O3 catalyst. Chinese Journal of Chemistry, 2012, 30(4): 771–778

DOI

60
Dong X, Lei J, Chen Y, Jiang H, Zhang M. Selective hydrogenation of acetic acid to ethanol on Cu–In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458

DOI

61
Studt F, Abild-Pedersen F, Wu Q, Jensen A D, Temel B, Grunwaldt J D, Norskov J K. CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. Journal of Catalysis, 2012, 293: 51–60

DOI

62
Nie X, Wang H, Janik M J, Chen Y, Guo X, Song C. Mechanistic insight into C–C coupling over Fe–Cu bimetallic catalysts in CO2 hydrogenation. Journal of Physical Chemistry C, 2017, 121(24): 13164–13174

DOI

63
Dong X, Guo L, Wen C, Ren N, Cao Z, Liu N, Guo L L. Mechanism of CO preferential oxidation catalyzed by Cu (n) Pt (n = 3–12): A DFT study. Research on Chemical Intermediates, 2015, 41(12): 10049–10066

DOI

64
Yuan X, Zheng J, Zhang Q, Li S, Yang Y, Gong J. Liquid-phase hydrogenation of cinnamaldehyde over Cu–Au/SiO2 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(9): 3300–3311

DOI

65
Nakagawa Y, Tomishige K. Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, 2011, 1(2): 179–190

DOI

66
Delgado S N, Vivier L, Especel C. Polyol hydrogenolysis on supported Pt catalysts: Comparison between glycerol and 1,2-propanediol. Catalysis Communications, 2014, 43: 107–111

DOI

67
Guan J, Chen X, Peng G, Wang X, Cao Q, Lan Z, Mu X. Role of ReOx in Re-modified Rh/ZrO2 and Ir/ZrO2 catalysts in glycerol hydrogenolysis: Insights from first-principles study. Chinese Journal of Catalysis, 2013, 34(9): 1656–1666

DOI

68
Hassou M, Couenne F, le Gorrec Y, Tayakout M. Modeling and simulation of polymeric nanocapsule formation by emulsion diffusion method. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(8): 2094–2105

DOI

69
van Ryneveld E, Mahomed A S, van Heerden P S, Friedrich H B. Direct hydrogenolysis of highly concentrated glycerol solutions over supported Ru, Pd and Pt catalyst systems. Catalysis Letters, 2011, 141(7): 958–967

DOI

70
Ardila A N, Sanchez-Castillo M A, Zepeda T A, Luz Villa A, Fuentes G A. Glycerol hydrodeoxygenation to 1,2-propanediol catalyzed by CuPd/TiO2-Na. Applied Catalysis B: Environmental, 2017, 219: 658–671

DOI

71
Xia S, Yuan Z, Wang L, Chen P, Hou Z. Hydrogenolysis of glycerol on bimetallic Pd–Cu/solid-base catalysts prepared via layered double hydroxides precursors. Applied Catalysis A, General, 2011, 403(1-2): 173–182

DOI

72
Feng Y S, Liu C, Kang Y M, Zhou X M, Liu L L, Deng J, Xu H J, Fu Y. Selective hydrogenolysis of glycerol to 1,2-propanediol catalyzed by supported bimetallic PdCu-KF/γ-Al2O3. Chemical Engineering Journal, 2015, 281: 96–101

DOI

73
Jin X, Dang L, Lohrman J, Subramaniam B, Ren S, Chaudhari R V. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano, 2013, 7(2): 1309–1316

DOI

74
Kang Y, Bu X, Wang G, Wang X, Li Q, Feng Y. A highly active Cu–Pt/SiO2 bimetal for the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Letters, 2016, 146(8): 1408–1414

DOI

75
Xia S, Zheng L, Nie R, Chen P, Lou H, Hou Z. Trivalent metal ions M3+ in M0.02Cu0.4Mg5.6Al1.98(OH)16CO3 layered double hydroxide as catalyst precursors for the hydrogenolysis of glycerol. Chinese Journal of Catalysis, 2013, 34(5): 986–992

DOI

76
Shozi M L, Dasireddy V D B C, Singh S, Mohlala P, Morgan D J, Iqbal S, Friedrich H B. An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy & Fuels, 2017, 1(6): 1437–1445

DOI

77
Vasiliadou E S, Lemonidou A A. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Applied Catalysis A, General, 2011, 396(1-2): 177–185

DOI

78
Wu Z, Mao Y, Wang X, Zhang M. Preparation of a Cu–Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover. Green Chemistry, 2011, 13(5): 1311–1316

DOI

79
Zhou J, Guo L, Guo X, Mao J, Zhang S. Selective hydrogenolysis of glycerol to propanediols on supported Cu–Containing bimetallic catalysts. Green Chemistry, 2010, 12(10): 1835–1843

DOI

80
Sun D, Yamada Y, Sato S. Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol. Applied Catalysis A, General, 2014, 475: 63–68

DOI

81
Pudi S M, Mondal T, Biswas P, Biswas S, Sinha S. Conversion of glycerol into value-added products over Cu–Ni catalyst supported on γ-Al2O3 and activated carbon. International Journal of Chemical Reactor Engineering, 2014, 12(1): 1–12

DOI

82
Pudi S M, Biswas P, Kumar S, Sarkar B. Selective hydrogenolysis of glycerol to 1,2-propanediol over bimetallic Cu–Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society, 2015, 26(8): 1551–1564

83
Pandhare N N, Pudi S M, Biswas P, Sinha S. Vapor phase hydrogenolysis of glycerol to 1,2-propanediol over γ-Al2O3 supported copper or nickel monometallic and copper-nickel bimetallic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 90–96

DOI

84
Yun Y S, Park D S, Yi J. Effect of nickel on catalytic behaviour of bimetallic Cu–Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science & Technology, 2014, 4(9): 3191–3202

DOI

85
Al Ameen A, Mondal S, Pudi S M, Pandhare N N, Biswas P. Liquid phase hydrogenolysis of glycerol over highly active 50%Cu–Zn(8:2)/MgO catalyst: Reaction parameter optimization by using response surface methodology. Energy & Fuels, 2017, 31(8): 8521–8533

DOI

86
Duran-Martin D, Lopez Granados M, Fierro J L G, Pinel C, Mariscal R. Deactivation of CuZn catalysts used in glycerol hydrogenolysis to obtain 1,2-propanediol. Topics in Catalysis, 2017, 60(15-16): 1062–1071

DOI

87
Freitas I C, Manfro R L, Souza M M V M. Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu–Ni catalysts. Applied Catalysis B: Environmental, 2018, 220: 31–41

DOI

88
Cai F, Pan D, Ibrahim J J, Zhang J, Xiao G. Hydrogenolysis of glycerol over supported bimetallic Ni/Cu catalysts with and without external hydrogen addition in a fixed-bed flow reactor. Applied Catalysis A, General, 2018, 564: 172–182

DOI

89
Dusescu C, Bolocan I. New catalysts for the glycerol hydrogenolysis. Revista De Chimie, 2012, 63(7): 732–738

90
Mane R B, Rode C V. Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu–Al oxide under an inert atmosphere. Green Chemistry, 2012, 14(10): 2780–2789

DOI

91
Samson K, Zelazny A, Grabowski R, Ruggiero-Mikolajczyk M, Sliwa M, Pamin K, Kornas A, Lachowska M. Influence of the carrier and composition of active phase on physicochemical and catalytic properties of CuAg/oxide catalysts for selective hydrogenolysis of glycerol. Research on Chemical Intermediates, 2015, 41(12): 9295–9306

DOI

92
Sun D, Sato S, Ueda W, Primo A, Garcia H, Corma A. Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18(9): 2579–2597

DOI

93
Huang Z, Barnett K J, Chada J P, Brentzel Z J, Xu Z, Dumesic J A, Huber G W. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts. ACS Catalysis, 2017, 7(12): 8429–8440

DOI

94
Yue H, Zhao Y, Zhao S, Wang B, Ma X, Gong J. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions. Nature Communications, 2013, 4(1): 2339

DOI

95
Yue H, Zhao Y, Zhao L, Lv J, Wang S, Gong J, Ma X. Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(9): 2798–2809

DOI

96
Zhu Y M, Shi X W L. Hydrogenation of ethyl acetate to ethanol over bimetallic Cu–Zn/SiO2 catalysts prepared by means of coprecipitation. Bulletin of the Korean Chemical Society, 2014, 35(1): 141–146

DOI

97
Zhao Y, Shan B, Wang Y, Zhou J, Wang S, Ma X. An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol. Industrial & Engineering Chemistry Research, 2018, 57(13): 4526–4534

DOI

98
Cai B, Zhou X C, Miao Y C, Luo J Y, Pan H, Huang Y B. Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a robust Cu–Ni bimetallic catalyst. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1322–1331

DOI

99
Wu J, Gao G, Sun P, Long X, Li F. Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters. ACS Catalysis, 2017, 7(11): 7890–7901

DOI

100
Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. Journal of the American Chemical Society, 2012, 134(34): 13922–13925

DOI

101
Long W, Liu P, Lv Y, Xiong W, Hao F, Luo H A. Silica-supported Cu–Pt bimetallic catalysts for liquid-phase diethyl oxalate hydrogenation. Canadian Journal of Chemistry, 2018, 96(4): 394–403

DOI

102
Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138

DOI

103
Subramanian N D, Kumar C S S R, Watanabe K, Fischer P, Tanaka R, Spivey J J. A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles. Catalysis Science & Technology, 2012, 2(3): 621–631

DOI

104
Yue H, Ma X, Gong J. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Accounts of Chemical Research, 2014, 47(5): 1483–1492

DOI

105
Niu T, Liu G L, Chen Y, Yang J, Wu J, Cao Y, Liu Y. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu–Co nanocatalyst for higher alcohol synthesis from syngas. Applied Surface Science, 2016, 364: 388–399

DOI

106
Eren B, Torres D, Karslioglu O, Liu Z, Wu C H, Stacchiola D, Bluhm H, Somorjai G A, Salmeron M. The structure of copper-cobalt surface alloys in equilibrium with carbon monoxide gas. Journal of the American Chemical Society, 2018, 140(21): 6575–6581

DOI

107
Hong Y, Yang Q, Kang N, Liu G, Ma Z, Liu Y. Cu–Co alloy nano-particles supported on SiO2 and modified by La and Y for ethanol synthesis from syngas. ChemistrySelect, 2017, 2(25): 7580–7589

DOI

108
Sun X, Yu Y, Zhang M. Insight into the effect of promoter Co on C2 oxygenate formation from syngas on CoCu(100) and Cu(100): A comparative DFT study. Applied Surface Science, 2018, 434: 28–39

DOI

109
Yang Q, Cao A, Kang N, Ning H, Wang J, Liu Z T, Liu Y. Bimetallic nano Cu–Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor. Industrial & Engineering Chemistry Research, 2017, 56(11): 2889–2898

DOI

110
Zhang M, Gong H, Yu Y. DFT study of key elementary steps for C+ alcohol synthesis on bimetallic sites of Cu–Co shell-core structure from syngas. Molecular Catalysis, 2017, 443: 165–174

DOI

111
Lü D, Zhu Y, Sun Y. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO. Chinese Journal of Catalysis, 2013, 34(11): 1998–2003

DOI

112
Wang P, Du X, Zhuang W, Cai K, Li J, Xu Y, Zhou Y, Sun K, Chen S, Li X, Tan Y. Carbon nanotube-supported copper-cobalt catalyst for the production of higher carbon number alcohols through carbon monoxide hydrogenation. Journal of the Brazilian Chemical Society, 2018, 29(7): 1373–1381

113
Liu G, Niu T, Pan D, Liu F, Liu Y. Preparation of bimetal Cu–Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas. Applied Catalysis A, General, 2014, 483: 10–18

DOI

114
Wang J, Chernavskii P A, Khodakov A Y, Wang Y. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 2012, 286: 51–61

DOI

115
Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catalysis Communications, 2013, 40: 154–157

DOI

116
Hu W, Li W, Shen R. Cetyltrimethylammonium bromide-promoted, ZnO-supported, and Mn-promoted Cu–Fe catalyst for the hydrogenation of CO to low-carbon alcohols. Energy Technology (Weinheim), 2017, 5(4): 557–567

DOI

117
Cao A, Yang Q, Wei Y, Zhang L, Liu Y. Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites. International Journal of Hydrogen Energy, 2017, 42(27): 17425–17434

DOI

118
Ling L, Wang Q, Zhang R, Li D, Wang B. Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst: Insight into the role of Fe as a promoter. Physical Chemistry Chemical Physics, 2017, 19(45): 30883–30894

DOI

119
Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis. Journal of Molecular Catalysis A: Chemical, 2013, 378: 319–325

DOI

120
Huang C, Zhang M, Zhu C, Mu X, Zhang K, Zhong L, Fang K, Wu M. Fabrication of highly stable SiO2 encapsulated multiple CuFe nanoparticles for higher alcohols synthesis via CO hydrogenation. Catalysis Letters, 2018, 148(4): 1080–1092

DOI

121
Sun C, Mao D, Han L, Yu J. Effect of impregnation sequence on performance of SiO2 supported Cu–Fe catalysts for higher alcohols synthesis from syngas. Catalysis Communications, 2016, 84: 175–178

DOI

122
Wu Q, Eriksen W L, Duchstein L D L, Christensen J M, Damsgaard C D, Wagner J B, Temel B, Grunwaldt J D, Jensen A D. Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation. Catalysis Science & Technology, 2014, 4(2): 378–386

DOI

123
Maniecki T P, Mierczynski P, Maniukiewicz W, Bawolak K, Gebauer D, Jozwiak W K. Bimetallic Au–Cu, Ag–Cu/CrAl3O6 catalysts for methanol synthesis. Catalysis Letters, 2009, 130(3-4): 481–488

DOI

124
Padama A A B, Villaos R A B, Albia J R, Dino W A, Nakanishi H, Kasai H. CO-induced Pd segregation and the effect of subsurface Pd on CO adsorption on CuPd surfaces. Journal of Physics Condensed Matter, 2017, 29(2): 025005

DOI

125
Mierczynski P, Ciesielski R, Kedziora A, Shtyka O, Maniecki T P. Methanol synthesis using copper catalysts supported on CeO2–Al2O3 mixed oxide. Fibre Chemistry, 2016, 48(4): 271–275

DOI

126
Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N. Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: Preparing catalyst by bimetallic physical sputtering. Fuel, 2013, 112: 140–144

DOI

127
Sun J, Yang G, Ma Q, Ooki I, Taguchi A, Abe T, Xie Q, Yoneyama Y, Tsubaki N. Fabrication of active Cu–Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(23): 8637–8643

DOI

128
Liu Y, Deng X, Han P, Huang W. CO hydrogenation to higher alcohols over CuZnAl catalysts without promoters: Effect of pH value in catalyst preparation. Fuel Processing Technology, 2017, 167: 575–581

DOI

129
Porosoff M D, Yan B, Chen J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy & Environmental Science, 2016, 9(1): 62–73

DOI

130
Behrens M, Studt F, Kasatkin I, Kuehl S, Haevecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B L, The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083): 893–897

DOI

131
Spencer M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Topics in Catalysis, 1999, 8(3-4): 259–266

DOI

132
Szanyi J, Goodman D W. Methanol synthesis on a Cu(100) catalyst. Catalysis Letters, 1991, 10(5-6): 383–390

DOI

133
Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angewandte Chemie International Edition, 2007, 46(38): 7324–7327

DOI

134
Gesmanee S, Koo-Amornpattana W. Catalytic hydrogenation of CO2 for methanol production in fixed-bed reactor using Cu–Zn supported on γ-Al2O3. In: 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies, 2017, 138: 739–744

135
Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P.CO2 hydrogenation to methanol using Cu–Zn catalyst supported on reduced graphene oxide nanosheets. Journal of CO2 Utilization, 2016, 16: 104–113

136
Diez-Ramirez J, Diaz J A, Sanchez P, Dorado F. Optimization of the Pd/Cu ratio in Pd–Cu–Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure. Journal of CO2 Utilization, 2017, 22: 71–80

137
Kattel S, Ramirez P J, Chen J G, Rodriguez J A, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299

DOI

138
Zhang C, Liao P, Wang H, Sun J, Gao P. Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation. Materials Chemistry and Physics, 2018, 215: 211–220

DOI

139
Graciani J, Mudiyanselage K, Xu F, Baber A E, Evans J, Senanayake S D, Stacchiola D J, Liu P, Hrbek J, Fernandez Sanz J, Rodriguez J A. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345(6196): 546–550

DOI

140
Rodriguez J A, Liu P, Stacchiola D J, Senanayake S D, White M G, Chen J G. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2. ACS Catalysis, 2015, 5(11): 6696–6706

DOI

141
Qiu M, Tao H, Li Y, Li Y, Ding K, Huang X, Chen W, Zhang Y. Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Applied Surface Science, 2018, 427: 837–847

DOI

142
Dean J, Yang Y, Austin N, Veser G, Mpourmpakis G. Design of copper-based bimetallic nanoparticles for carbon dioxide adsorption and activation. ChemSusChem, 2018, 11(7): 1169–1178

DOI

143
Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu–ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A, General, 2008, 350(1): 16–23

DOI

144
Bianchi D, Chafik T, Khalfallah M, Teichner S J. Intermediate species on zirconia supported methanol aerogel catalysts. V. Adsorption of methanol. Applied Catalysis A, General, 1995, 123(1): 89–110

DOI

145
Fisher I A, Bell A T. In-situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 1998, 178(1): 222–237

DOI

146
Din I U, Shaharun M S, Subbarao D, Naeem A. Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcination temperature. Journal of Power Sources, 2015, 274: 619–628

DOI

147
Din I U, Shaharun M S, Naeem A, Tasleem S, Johan M R. Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chemical Engineering Journal, 2018, 334: 619–629

DOI

148
Jiang X, Koizumi N, Guo X, Song C. Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2015, 170: 173–185

DOI

149
Jiang X, Wang X X, Nie X W, Koizumi N, Guo X W, Song C S. CO2 hydrogenation to methanol on Pd–Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species. Catalysis Today, 2018, 316: 62–70

DOI

150
Liu L, Fan F, Jiang Z, Gao X, Wei J, Fang T. Mechanistic study of Pd–Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. Journal of Physical Chemistry C, 2017, 121(47): 26287–26299

DOI

151
Liu L, Yao H, Jiang Z, Fang T. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Applied Surface Science, 2018, 451: 333–345

DOI

152
Nie X, Jiang X, Wang H, Luo W, Janik M J, Chen Y, Guo X, Song C. Mechanistic understanding of alloy effect and water promotion for Pd–Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catalysis, 2018, 8(6): 4873–4892

DOI

153
Mistry H, Reske R, Strasser P, Cuenya B R. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catalysis Today, 2017, 288: 30–36

DOI

154
Tan Q, Shi Z, Wu D. CO2 hydrogenation to methanol over a highly active Cu–Ni/CeO2-nanotube catalyst. Industrial & Engineering Chemistry Research, 2018, 57(31): 10148–10158

DOI

155
Branco J B, Ferreira A C, Goncalves A P, Soares C O, Almeida Gasche T. Synthesis of methanol using copper-f block element bimetallic oxides as catalysts and greenhouse gases (CO2, CH4) as feedstock. Journal of Catalysis, 2016, 341: 24–32

DOI

156
Shi X, Yu H, Gao S, Li X, Fang H, Li R, Li Y, Zhang L, Liang X, Yuan Y. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu–Fe catalyst for the synthesis of higher alcohols from syngas. Fuel, 2017, 210: 241–248

DOI

157
Zhao F, Gong M, Cao K, Zhang Y, Li J, Chen R. Atomic layer deposition of Ni on Cu nanoparticles for methanol synthesis from CO2 hydrogenation. ChemCatChem, 2017, 9(19): 3772–3778

DOI

158
Li R, Zhang M, Yu Y. A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation. Applied Surface Science, 2012, 258(18): 6777–6784

DOI

159
Velu S, Suzuki K, Okazaki M, Kapoor M P, Osaki T, Ohashi F. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. Journal of Catalysis, 2000, 194(2): 373–384

DOI

160
Perez-Hernandez R, Galicia G M, Anaya D M, Palacios J, Angeles-Chavez C, Arenas-Alatorre J. Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 2008, 33(17): 4569–4576

DOI

161
Lytkina A A, Zhilyaeva N A, Ermilova M M, Orekhova N V, Yaroslavtsev A B. Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 2015, 40(31): 9677–9684

DOI

162
Mayr L, Koepfle N, Kloetzer B, Goetsch T, Bernardi J, Schwarz S, Keilhauer T, Armbruester M, Penner S. Microstructural and chemical evolution and analysis of a self-activating CO2-selective Cu–Zr bimetallic methanol steam reforming catalyst. Journal of Physical Chemistry C, 2016, 120(44): 25395–25404

DOI

163
Lytkina A A, Orekhova N V, Ermilova M M, Yaroslavtsev A B. The influence of the support composition and structure (MxZr1–xO2-d) of bimetallic catalysts on the activity in methanol steam reforming. International Journal of Hydrogen Energy, 2018, 43(1): 198–207

DOI

164
Lu T, Du Z, Liu J, Chen C, Xu J. Dehydrogenation of primary aliphatic alcohols to aldehydes over Cu–Ni bimetallic catalysts. Chinese Journal of Catalysis, 2014, 35(12): 1911–1916

DOI

165
Yang X, Fu X, Bu N, Han L, Wang J, Song C, Su Y, Zhou L, Lu T. Promotion effect of nickel for Cu–Ni/γ-Al2O3 catalysts in the transfer dehydrogenation of primary aliphatic alcohols. Journal of the Indian Chemical Society, 2017, 14(1): 111–119

166
Mahata N, Cunha A F, Órfão J J M, Figueiredo J L. Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159

DOI

167
van Haasterecht T, van Deelen T W, de Jong K P, Bitter J H. Transformations of polyols to organic acids and hydrogen in aqueous alkaline media. Catalysis Science & Technology, 2014, 4(8): 2353–2366

DOI

168
Chen L C, Cheng H, Chiang C W, Lin S D. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst. ChemSusChem, 2015, 8(10): 1787–1793

DOI

169
Khzouz M, Gkanas E I, Du S, Wood J. Catalytic performance of Ni–Cu/Al2O3 for effective syngas production by methanol steam reforming. Fuel, 2018, 232: 672–683

DOI

170
Ponomareva E A, Krasnikova I V, Egorova E V, Mishakov I V, Vedyagin A A. Dehydrogenation of ethanol over carbon-supported Cu–Co catalysts modified by catalytic chemical vapor deposition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(1): 399–408

DOI

171
Deinega I V, Dolgykh L Y, Stolyarchuk I L, Staraya L A, Strizhak P E, Moroz E M, Pakharukova V P, Zyuzin D A. Catalytic properties of M–Cu/ZrO2 (M= Fe, Co, Ni) in steam reforming of ethanol. Theoretical and Experimental Chemistry, 2013, 48(6): 386–393

DOI

172
Mierczynski P. Comparative studies of bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu catalysts supported on ZnO–Al2O3, ZrO2–Al2O3 systems. Catalysis Letters, 2016, 146(10): 1825–1837

DOI

173
Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Ciesielski R, Rogowski J, Szynkowska I M, Trifonov A Y, Dubkov S V, Gromov D G, Maniecki T P. The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catalysis Science & Technology, 2016, 6(12): 4168–4183

DOI

174
Xu J, Yue H, Liu S, Wang H, Du Y, Xu C, Dong W, Liu C. Cu–Ag/hydrotalcite catalysts for dehydrogenative cross-coupling of primary and secondary benzylic alcohols. RSC Advances, 2016, 6(29): 24164–24174

DOI

175
Sekizawa K, Yano S, Eguchi K, Arai H. Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Applied Catalysis A, General, 1998, 169(2): 291–297

DOI

176
Utaka T, Sekizawa K, Eguchi K. CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts. Applied Catalysis A, General, 2000, 194: 21–26

DOI

177
Utaka T, Takeguchi T, Kikuchi R, Eguchi K. CO removal from reformed fuels over Cu and precious metal catalysts. Applied Catalysis A, General, 2003, 246(1): 117–124

DOI

178
Ghosh S, Hariharan S, Tiwari A K. Water adsorption and dissociation on copper/nickel bimetallic surface alloys: Effect of surface temperature on reactivity. Journal of Physical Chemistry C, 2017, 121(30): 16351–16365

DOI

179
Ayastuy J L, Gurbani A, González-Marcos M P, Gutiérrez-Ortiz M A. Effect of copper loading on copper-ceria catalysts performance in CO selective oxidation for fuel cell applications. International Journal of Hydrogen Energy, 2010, 35(3): 1232–1244

DOI

180
Gamboa-Rosales N K, Ayastuy J L, Gonzalez-Marcos M P, Gutierrez-Ortiz M A. Effect of Au promoter in CuO/CeO2 catalysts for the oxygen-assisted WGS reaction. Catalysis Today, 2011, 176(1): 63–71

DOI

181
Gamboa-Rosales N K, Ayastuy J L, Gonzalez-Marcos M P, Gutierrez-Ortiz M A. Oxygen-enhanced water gas shift over ceria-supported Au–Cu bimetallic catalysts prepared by wet impregnation and deposition-precipitation. International Journal of Hydrogen Energy, 2012, 37(8): 7005–7016

DOI

182
Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K. Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction-Catalyst preparation by adopting “memory effect” of hydrotalcite. Applied Catalysis A, General, 2008, 337(1): 48–57

DOI

183
Fox E B, Lee A F, Wilson K, Song C. In-situ XPS study on the reducibility of Pd-promoted Cu/CeO2 catalysts for the oxygen-assisted water-gas-shift reaction. Topics in Catalysis, 2008, 49(1-2): 89–96

DOI

184
Kugai J, Fox E B, Song C. Kinetic characteristics of oxygen-enhanced water gas shift on CeO2-supported Pt-Cu and Pd–Cu bimetallic catalysts. Applied Catalysis A, General, 2015, 497: 31–41

DOI

185
Arbeláez O, López-Ríos V, Villa A L, Villegas A. Experimental design to determine the effect of the pellet size of bimetallic Cu–Ni catalysts in the water gas shift reaction. Revista Colombiana de Quimica, 2018, 47(1): 50–56

186
Huang Y C, Zhou T, Liu H, Ling C, Wang S, Du J Y. Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards water-gas shift? A density functional theory investigation. ChemPhysChem, 2014, 15(12): 2490–2496

DOI

187
Ang M L, Miller J T, Cui Y, Mo L, Kawi S. Bimetallic Ni–Cu alloy nanoparticles supported on silica for the water-gas shift reaction: Activating surface hydroxyls via enhanced CO adsorption. Catalysis Science & Technology, 2016, 6(10): 3394–3409

DOI

188
Arbeladez O, Reina T R, Ivanova S, Bustarnante F, Villa A L, Centeno M A, Odriozola J A. Mono and bimetallic Cu–Ni structured catalysts for the water gas shift reaction. Applied Catalysis A, General, 2015, 497: 1–9

DOI

189
Ray D, Ghosh S, Tiwari A K. Controlling heterogeneous catalysis of water dissociation using Cu–Ni bimetallic alloy surfaces: A quantum dynamics study. Journal of Physical Chemistry A, 2018, 122(26): 5698–5709

DOI

190
Yan H, Qin X T, Yin Y, Teng Y F, Jin Z, Jia C J. Promoted Cu–Fe3O4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content. Applied Catalysis B: Environmental, 2018, 226: 182–193

DOI

191
Shinde V M, Madras G. Water gas shift reaction over multi-component ceria catalysts. Applied Catalysis B: Environmental, 2012, 123: 367–378

DOI

192
Tepamatr P, Laosiripojana N, Charojrochkul S. Water gas shift reaction over monometallic and bimetallic catalysts supported by mixed oxide materials. Applied Catalysis A, General, 2016, 523: 255–262

DOI

193
Dasireddy V D B C, Valand J, Likozar B. PROX reaction of CO in H2/H2O/CO2 water-gas shift (WGS) feedstocks over Cu–Mn/Al2O3 and Cu–Ni/Al2O3 catalysts for fuel cell applications. Renewable Energy, 2018, 116: 75–87

DOI

194
Rad A R S, Khoshgouei M B, Rezvani S, Rezvani A R. Study of Cu–Ni/SiO2 catalyst prepared from a novel precursor, [Cu(H2O)6][Ni(dipic)2]∙2H2O/SiO2, for water gas shift reaction. Fuel Processing Technology, 2012, 96: 9–15

DOI

195
Liu Z, Ihl Woo S. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews, 2006, 48(1): 43–89

DOI

196
Li J, Chang H, Ma L, Hao J, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 2011, 175(1): 147–156

DOI

197
Liu C, Chen L, Li J, Ma L, Arandiyan H, Du Y, Xu J, Hao J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 2012, 46(11): 6182–6189

DOI

198
Balle P, Geiger B, Kureti S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Applied Catalysis B: Environmental, 2009, 85(3-4): 109–119

DOI

199
Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1-2): 1–36

DOI

200
Dunn J P, Koppula P R, Stenger H G, Wachs I E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Applied Catalysis B: Environmental, 1998, 19(2): 103–117

DOI

201
Qu R, Gao X, Cen K, Li J. Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 142: 290–297

DOI

202
Jiang H, Wang S, Wang C, Chen Y, Zhang M. Selective catalytic reduction of NOx with NH3 on Cu-BTC-derived catalysts: Influence of modulation and thermal treatment. Catalysis Surveys from Asia, 2018, 22(2): 95–104

DOI

203
Jiang H, Zhou J, Wang C, Li Y, Chen Y, Zhang M. Effect of cosolvent and temperature on the structures and properties of Cu-MOF-74 in low-temperature NH3-SCR. Industrial & Engineering Chemistry Research, 2017, 56(13): 3542–3550

DOI

204
Panahi P N, Salari D, Niaei A, Mousavi S M. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1793–1799

DOI

205
Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Applied Catalysis B: Environmental, 2014, 148: 520–531

DOI

206
Dasireddy V D B C, Likozar B. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT). Chemical Engineering Journal, 2017, 326: 886–900

DOI

207
Jouini H, Mejri I, Petitto C, Martinez-Ortigosa J, Vidal-Moya A, Mhamdi M, Blasco T, Delahay G. Characterization and NH3-SCR reactivity of Cu–Fe-ZSM-5 catalysts prepared by solid state ion exchange: The metal exchange order effect. Microporous and Mesoporous Materials, 2018, 260: 217–226

DOI

208
Cao F, Chen J, Lyu C, Ni M, Gao X, Cen K. Synthesis, characterization and catalytic performances of Cu- and Mn-containing ordered mesoporous carbons for the selective catalytic reduction of NO with NH3. Catalysis Science & Technology, 2015, 5(2): 1267–1279

DOI

209
Chen J, Cao F, Qu R, Gao X, Cen K. Bimetallic cerium-copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH3. Journal of Colloid and Interface Science, 2015, 456: 66–75

DOI

210
Spassova I, Khristova M, Nickolov R, Mehandjiev D. Novel application of depleted fullerene soot (DFS) as support of catalysts for low-temperature reduction of NO with CO. Journal of Colloid and Interface Science, 2008, 320(1): 186–193

DOI

211
Lu C Y, Tseng H H, Wey M Y, Liu L Y, Chuang K H. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu—Co/Al2O3 prepared using the polyol process. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2009, 157(1-3): 105–112

DOI

212
Tseng H H, Lin H Y, Kuo Y F, Su Y T. Synthesis, characterization, and promoter effect of Cu–Zn/γ-Al2O3 catalysts on NO reduction with CO. Chemical Engineering Journal, 2010, 160(1): 13–19

DOI

213
Ramirez-Garza R E, Rodriguez-Iznaga I, Simakov A, Farias M H, Castillon-Barraza F F. Cu–Ag/mordenite catalysts for NO reduction: Effect of silver on catalytic activity and hydrothermal stability. Materials Research Bulletin, 2018, 97: 369–378

DOI

214
Zheng W, Lin J, Zhan Y, Wang H. Adsorption Characteristics of nitrate and phosphate from aqueous solution on zirconium-hexadecyltrimethylammonium chloride modified activated carbon. Environmental Science, 2015, 36(6): 2185–2194 (in Chinese)

215
Zhu J, Wang X, Shen J, Lin Y. Adsorption of nitrate and phosphate by MTAB-modified activated carbon. Chemical Industry and Engineering Progress, 2017, 36(7): 2676–2683 (in Chinese)

216
Schoeman J J, Steyn A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 2003, 155(1): 15–26

DOI

217
Mereddy R, Chan A, Fanning K, Nirmal N, Sultanbawa Y. Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology. Food Chemistry, 2017, 215: 311–317

DOI

218
Matos C T, Velizarov S, Crespo J G, Reis M A M. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 2006, 40(2): 231–240

DOI

219
Primo O, Rivero M J, Urtiaga A M, Ortiz I. Nitrate removal from electro-oxidized landfill leachate by ion exchange. Journal of Hazardous Materials, 2009, 164(1): 389–393

DOI

220
Ye T, Zhang G, Wang K, Shuang C D, Li A M. Bioregeneration of anion exchange resin used in nitrate removal. Environmental Science & Technology, 2018, 39(8): 3753–3758 (in Chinese)

221
Yi W, Sakamoto Y, Kamiya Y. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copper-palladium supported on active carbon. Applied Catalysis A, General, 2009, 361(1-2): 123–129

DOI

222
Chen S, Zhang H, Wu L, Zhao Y, Huang C, Ge M, Liu Z. Controllable synthesis of supported Cu–M (M= Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. Journal of Materials Chemistry, 2012, 22(18): 9117–9122

DOI

223
Soares O S G P, Orfao J J M, Pereira M F R. Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009, 91(1-2): 441–448

DOI

224
Soares O S G P, Orfao J J M, Pereira M F R. Nitrate reduction catalyzed by Pd–Cu and Pt–Cu supported on different carbon materials. Catalysis Letters, 2010, 139(3-4): 97–104

DOI

225
Sakamoto Y, Kamiya Y, Okuhara T. Selective hydrogenation of nitrate to nitrite in water over Cu–Pd bimetallic clusters supported on active carbon. Journal of Molecular Catalysis A: Chemical, 2006, 250(1-2): 80–86

DOI

226
Wang Y, Kasuga T, Mikami I, Kamiya Y, Okuhara T. Palladium-copper/hydrophobic active carbon as a highly active and selective catalyst for hydrogenation of nitrate in water. Chemistry Letters, 2007, 36(8): 994–995

DOI

227
Yoshinaga Y, Akita T, Mikami I, Okuhara T. Hydrogenation of nitrate in water to nitrogen over Pd–Cu supported on active carbon. Journal of Catalysis, 2002, 207(1): 37–45

DOI

228
Fan J, Xu H, Lv M, Wang J, Teng W, Ran X, Gou X, Wang X, Sun Y, Yang J. Mesoporous carbon confined palladium-copper alloy composites for high performance nitrogen selective nitrate reduction electrocatalysis. New Journal of Chemistry, 2017, 41(6): 2349–2357

DOI

229
Bae S, Jung J, Lee W. The effect of pH and zwitterionic buffers on catalytic nitrate reduction by TiO2-supported bimetallic catalyst. Chemical Engineering Journal, 2013, 232: 327–337

DOI

230
Wang Q, Wang W, Yan B, Shi W, Cui F, Wang C. Well-dispersed Pd–Cu bimetals in TiO2 nanofiber matrix with enhanced activity and selectivity for nitrate catalytic reduction. Chemical Engineering Journal, 2017, 326: 182–191

DOI

231
Jung J, Bae S, Lee W. Nitrate reduction by maghemite supported Cu–Pd bimetallic catalyst. Applied Catalysis B: Environmental, 2012, 127: 148–158

DOI

232
Hamid S, Bae S, Lee W, Amin M T, Alazba A A. Catalytic nitrate removal in continuous bimetallic Cu–Pd/nanoscale zerovalent iron system. Industrial & Engineering Chemistry Research, 2015, 54(24): 6247–6257

DOI

233
Chen H Y, Lo S L, Ou H H. Catalytic hydrogenation of nitrate on Cu–Pd supported on titanate nanotube and the experiment after aging, sulfide fouling and regeneration procedures. Applied Catalysis B: Environmental, 2013, 142: 65–71

DOI

234
Gutés A, Carraro C, Maboudian R. Nitrate amperometric sensor in neutral pH based on Pd nanoparticles on epoxy-copper electrodes. Electrochimica Acta, 2013, 103: 38–43

DOI

235
Su J F, Ruzybayev I, Shah I, Huang C P. The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold. Applied Catalysis B: Environmental, 2016, 180: 199–209

DOI

236
Liu J, Wu Q, Huang F, Zhang H, Xu S, Huang W, Li Z. Facile preparation of a variety of bimetallic dendrites with high catalytic activity by two simultaneous replacement reactions. RSC Advances, 2013, 3(34): 14312–14321

DOI

237
Barman B K, Nanda K K. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/dendrites as efficient catalysts for 4-nitrophenol reduction. Dalton Transactions (Cambridge, England), 2015, 44(9): 4215–4222

DOI

238
Najdovski I, Selvakannan P R, O’Mullane A P. Cathodic corrosion of Cu substrates as a route to nanostructured Cu/M (M= Ag, Au, Pd) surfaces. ChemElectroChem, 2015, 2(1): 106–111

DOI

239
Saikia H, Borah B J, Yamada Y, Bharali P. Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. Journal of Colloid and Interface Science, 2017, 486: 46–57

DOI

240
Mallikarjuna K, Kim H. Synthesis and characterization of highly active Cu/Pd bimetallic nanostructures. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 535: 194–200

DOI

241
Sun Y, Zhang F, Xu L, Yin Z, Song X. Roughness-controlled copper nanowires and Cu nanowires-Ag heterostructures: Synthesis and their enhanced catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18583–18592

DOI

242
Wu W, Lei M, Yang S, Zhou L, Liu L, Xiao X, Jiang C, Roy V A L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3450–3455

DOI

243
Xu S, Li H, Wang L, Yue Q, Li R, Xue Q, Zhang Y, Liu J. Synthesis of carbon-encapsulated Cu–Ag dimetallic nanoparticles and their recyclable superior catalytic activity towards 4-nitrophenol reduction. European Journal of Inorganic Chemistry, 2015, 28(28): 4731–4736

DOI

244
Khan F U, Asimullah S B, Khan T, Kamal A M, Asiri I U, Khan K, Akhtar . Novel combination of zero-valent Cu and Ag nanoparticles@cellulose acetate nanocomposite for the reduction of 4-nitro phenol. International Journal of Biological Macromolecules, 2017, 102: 868–877

DOI

245
Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir, 2017, 33(31): 7606–7614

DOI

246
Hareesh H N, Minchitha K U, Venkatesh K, Nagaraju N, Kathyayini N. Environmentally benign selective hydrogenation of α, β-unsaturated aldehydes and reduction of aromatic nitro compounds using Cu based bimetallic nanoparticles supported on multiwalled carbon nanotubes and mesoporous carbon. RSC Advances, 2016, 6(85): 82359–82369

DOI

247
Sharma M, Hazra S, Basu S. Synthesis of heterogeneous Ag–Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Advanced Powder Technology, 2017, 28(11): 3085–3094

DOI

248
Ismail M, Khan M I, Khan S B, Khan M A, Akhtar K, Asiri A M. Green synthesis of plant supported Cu–Ag and Cu–Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. Journal of Molecular Liquids, 2018, 260: 78–91

DOI

249
Najdovski I, Selvakannan P, Bhargava S K, O’Mullane A P. Formation of nanostructured porous Cu–Au surfaces: The influence of cationic sites on (electro)-catalysis. Nanoscale, 2012, 4(20): 6298–6306

DOI

250
Cai R, Ellis P R, Yin J, Liu J, Brown C M, Griffin R, Chang G, Yang D, Ren J, Cooke K, Bishop P T, Theis W, Palmer R E. Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small, 2018, 14(13): 1703734

DOI

251
Sun L, Deng Y, Yang Y, Xu Z, Xie K, Liao L. Preparation and catalytic activity of magnetic bimetallic nickel/copper nanowires. RSC Advances, 2017, 7(29): 17781–17787

DOI

252
El Fadl F I A, Mahmoud G A, Badawy N A, Kamal F H, Mohamed A A. Pectin-based hydrogels and its ferrite nanocomposites for removal of nitro compounds. Desalination and Water Treatment, 2017, 90: 283–293

DOI

253
Shesterkina A A, Shuvalova E V, Kirichenko O A, Strelkova A A, Nissenbaum V D, Kapustin G I, Kustov L M. Application of silica-supported Fe–Cu nanoparticles in the selective hydrogenation of p-dinitrobenzene to p-phenylenediamine. Russian Journal of Physical Chemistry A, 2017, 91(2): 201–204

DOI

254
Karami S, Zeynizadeh B, Shokri Z. Cellulose supported bimetallic Fe–Cu nanoparticles: A magnetically recoverable nanocatalyst for quick reduction of nitroarenes to amines in water. Cellulose (London, England), 2018, 25(6): 3295–3305

DOI

255
Ge Y, Gao T, Wang C, Shah Z H, Lu R, Zhang S. Highly efficient silica coated CuNi bimetallic nanocatalyst from reverse microemulsion. Journal of Colloid and Interface Science, 2017, 491: 123–132

DOI

256
Yang C, Xue W, Yin H, Lu Z, Wang A, Shen L, Jiang Y. Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H2 to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles. New Journal of Chemistry, 2017, 41(9): 3358–3366

DOI

257
Abay A K, Chen X, Kuo D H. Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants. New Journal of Chemistry, 2017, 41(13): 5628–5638

DOI

258
Rana S, Jonnalagadda S B. A facile synthesis of Cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Advances, 2017, 7(5): 2869–2879

DOI

259
Wang M S, Zou P P, Huang Y L, Wang Y Y, Dai L Y. Three-dimensional graphene-based Pt–Cu nanoparticles-containing composite as highly active and recyclable catalyst. Acta Physico-Chimica Sinica, 2017, 33(6): 1230–1235 (in Chinese)

260
Chen Z, Zhao B, Fu X Z, Sun R, Wong C P. CuO nanorods supported Pd nanoparticles as high performance electrocatalysts for glucose detection. Journal of Electroanalytical Chemistry, 2017, 807: 220–227

DOI

261
Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Applied Materials & Interfaces, 2014, 6(10): 7055–7062

DOI

262
You H, Zhang L, Jiang Y, Shao T, Li M, Gong J. Bubble-supported engineering of hierarchical CuCo2S4 hollow spheres for enhanced electrochemical performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(13): 5235–5240

DOI

263
Xu H, Miao B, Zhang M, Chen Y, Wang L. Mechanism of C–C and C–H bond cleavage in ethanol oxidation reaction on Cu2O(111): A DFT-D and DFT plus U study. Physical Chemistry Chemical Physics, 2017, 19(38): 26210–26220

DOI

264
Wu Z, Zhang M, Jiang H, Zhong C J, Chen Y, Wang L. Competitive C–C and C–H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment. Physical Chemistry Chemical Physics, 2017, 19(23): 15444–15453

DOI

265
Lin J F, Mohl M, Toth G, Puskas R, Kukovecz A, Kordas K. Electrocatalytic properties of carbon nanotubes decorated with copper and bimetallic CuPd nanoparticles. Topics in Catalysis, 2015, 58(14-17): 1119–1126

DOI

266
Mirza S, Chen H, Gu Z G, Zhang J. Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF. RSC Advances, 2018, 8(4): 1803–1807

DOI

267
Zhang J, Feng A, Bai J, Tan Z, Shao W, Yang Y, Hong W, Xiao Z. One-pot synthesis of hierarchical flower-like Pd–Cu alloy support on graphene towards ethanol oxidation. Nanoscale Research Letters, 2017, 12(1): 521

DOI

268
Maswadeh Y, Shan S, Prasai B, Zhao Y, Xie Z H, Wu Z, Luo J, Ren Y, Zhong C J, Petkov V. Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd–Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(16): 7355–7365

DOI

269
Xiong Y, Ye W, Chen W, Wu Y, Xu Q, Yan Y, Zhang H, Wu J, Yang D. PdCu alloy nanodendrites with tunable composition as highly active electrocatalysts for methanol oxidation. RSC Advances, 2017, 7(10): 5800–5806

DOI

270
Yan B, Wang C, Xu H, Zhang K, Li S, Du Y. Facile synthesis of a porous Pd/Cu alloy and its enhanced performance toward methanol and formic acid electrooxidation. ChemPlusChem, 2017, 82(8): 1121–1128

DOI

271
Hong W, Wang J, Wang E. Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties. Nanoscale, 2016, 8(9): 4927–4932

DOI

272
Pryadchenko V V, Belenov S V, Shemet D B, Volochaev V A, Srabionyan V V, Avakyan L A, Tabachkova N Y, Guterman V E, Bugaev L A. The effect of thermal treatment on the atomic structure of core-shell PtCu nanoparticles in PtCu/C electrocatalysts. Physics of the Solid State, 2017, 59(8): 1666–1673

DOI

273
Wu S, Zhu Y, Huo Y, Luo Y, Zhang L, Wan Y, Nan B, Cao L, Wang Z, Li M, Yang M, Cheng H, Lu Z. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China-Materials, 2017, 60(7): 654–663

DOI

274
Zhang H M, Wang Y F, Kwok Y H, Wu Z C, Xia D H, Leung D Y C. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst. ChemSusChem, 2018, 11(17): 2889–2897

DOI

275
Zhang N, Chen F, Wu X, Wang Q, Qaseem A, Xia Z. The activity origin of core-shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(15): 7043–7054

DOI

276
Duan D, You X, Liang J, Liu S, Wang Y. Carbon supported Cu–Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochimica Acta, 2015, 176: 1126–1135

DOI

277
Duan D, Liu H, You X, Wei H, Liu S. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. Journal of Power Sources, 2015, 293: 292–300

DOI

278
Cheng H, Li M L, Su C Y, Li N, Liu Z Q. Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A high-efficiency bifunctional oxygen electrode for Zn-Air batteries. Advanced Functional Materials, 2017, 27(30): 1701833

DOI

279
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. Journal of the American Chemical Society, 2017, 139(49): 18093–18100

DOI

280
Wu D, Dong C, Wu D, Fu J, Liu H, Hu S, Jiang Z, Qiao S Z, Du X W. Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(20): 9373–9377

DOI

281
Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110). Journal of Electroanalytical Chemistry, 1997, 440(1-2): 283–286

DOI

282
Lee S, Park G, Lee J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catalysis, 2017, 7(12): 8594–8604

DOI

283
Luo W, Xie W, Mutschler R, Oveisi E, De Gregorio G L, Buonsanti R, Zuttel A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catalysis, 2018, 8(7): 6571–6581

DOI

284
Larrazábal G O, Shinagawa T, Martin A J, Perez-Ramirez J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9(1): 1477

DOI

285
Wang C, Cao M, Jiang X, Wang M, Shen Y. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271: 544–550

DOI

286
Yang P, Zhao Z J, Chang X, Mu R, Zha S, Zhang G, Gong J. The functionality of surface hydroxy groups on the selectivity and activity of carbon dioxide reduction over cuprous oxide in aqueous solutions. Angewandte Chemie International Edition, 2018, 57(26): 7724–7728

DOI

287
Zhu W, Zhang L, Yang P, Hu C, Dong H, Zhao Z J, Mu R, Gong J. Formation of enriched cacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys. ACS Energy Letters, 2018, 3(9): 2144–2149

DOI

288
Ren D, Ang B S H, Yeo B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catalysis, 2016, 6(12): 8239–8247

DOI

289
Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. Journal of the American Chemical Society, 2017, 139(1): 47–50

DOI

290
Zhu W, Zhang L, Yang P, Chang X, Dong H, Li A, Hu C, Huang Z, Zhao Z J, Gong J. Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small, 2018, 14(7): 1703314–1703321

DOI

291
Todoroki N, Yokota N, Nakahata S, Nakamura H, Wadayama T. Electrochemical reduction of CO2 on Ni- and Pt-epitaxially grown Cu(111) surfaces. Electrocatalysis (New York), 2016, 7(1): 97–103

DOI

292
Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. Cu–Pt bimetallic nanoparticles supported metal organic framework-derived nanoporous carbon as a catalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 190: 729–736

DOI

293
Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. MOF-derived Cu–Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis. Applied Surface Science, 2018, 436: 451–459

DOI

294
Amiripour F, Azizi S N, Ghasemi S. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for Chick for determination of hydrazine. Biosensors & Bioelectronics, 2018, 107: 111–117

DOI

295
Tran D T, Hoa V H, Tuan L H, Kim N H, Lee J H. Cu–Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosensors & Bioelectronics, 2018, 119: 134–140

DOI

296
Thota R, Sundari S, Berchmans S, Ganesh V. Silver-copper bimetallic flexible electrodes prepared using a galvanic replacement reaction and their applications. ChemistrySelect, 2017, 2(6): 2114–2122

DOI

297
Lee J W, Liu X, Mou C Y. Selective hydrogenation of acetylene over SBA-15 supported Au–Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914

DOI

298
Zhang R G, Zhao B, Ling L X, Wang A J, Russell C K, Wang B J, Fan M H. Cost-effective palladium-doped Cu bimetallic materials to tune selectivity and activity by using doped atom ensembles as active sites for efficient removal of acetylene from ethylene. ChemCatChem, 2018, 10(11): 2424–2432

DOI

299
McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

DOI

300
Fan S B, Kouotou P M, Weng J J, Pan G F, Tian Z Y. Investigation on the structure stability and catalytic activity of Cu–Co binary oxides. Proceedings of the Combustion Institute, 2017, 36(3): 4375–4382

DOI

301
Zhang L, Mao J B, Li S M, Yin J M, Sun X D, Guo X W, Song C S, Zhou J X. Hydrogenation of levulinic acid into γ-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018, 232: 1–10

DOI

302
Verma D, Insyani R, Cahyadi H S, Park J, Kim S M, Cho J M, Bae J W, Kim J. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals. Green Chemistry, 2018, 20(14): 3253–3270

DOI

303
Shi Z, Yang H, Gao P, Li X, Zhong L, Wang H, Liu H, Wei W, Sun Y. Direct conversion of CO2 to long-chain hydrocarbon fuels over K-promoted CoCu/TiO2 catalysts. Catalysis Today, 2018, 311: 65–73

DOI

304
Wei Y, Chang X, Wang T, Li C, Gong J. A low-cost NiO hole transfer layer for ohmic back contact to Cu2O for photoelectrochemical water splitting. Small, 2017, 13(39): 1702007

DOI

305
Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 2016, 55(31): 8840–8845

DOI

306
Bashiri R, Mohamed N M, Kait C F, Sufian S. Study on synthesis and sharacterization of Cu–Ni doped TiO2 by sol-gel hydrothermal. Advanced Materials Research, 2014, 925: 248–252

DOI

307
Bashiri R, Mohamed N M, Kait C F, Sufian S. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu–Ni/TiO2. In: Proceedings of the 23rd Scientific Conference of Microscopy Society Malaysia, 2015, 1669: 020055

308
Bashiri R, Mohamed N M, Kait C F, Sufian S, Khatani M, Hanaei H. Effect of preparation parameters on optical properties of Cu and Ni doped TiO2 photocatalyst. In: Proceeding of 4th International Conference on Process Engineering and Advanced Materials, 2016, 148: 151–157

309
Bashiri R, Mohamed N M, Kait C F, Sufian S, Kakooei S, Khatani M, Gholami Z. Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renewable Energy, 2016, 99: 960–970

DOI

310
Bashiri R, Mohamed N M, Kait C F, Sufian S, Khatani M. Enhanced hydrogen production over incorporated Cu and Ni into titanic photocatalyst in glycerol-based photoelectrochemical cell: Effect of total metal loading and calcination temperature. International Journal of Hydrogen Energy, 2017, 42(15): 9553–9566

DOI

Outlines

/