Frontiers of Chemical Science and Engineering >
Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation
Received date: 18 Oct 2019
Accepted date: 26 Dec 2019
Published date: 15 Oct 2020
Copyright
Gene therapy has drawn great attention in the treatments of many diseases, especially for cardiovascular diseases. However, the development of gene carriers with low cytotoxicity and multitargeting function is still a challenge. Herein, the multitargeting REDV-G-TAT-G-NLS peptide was conjugated to amphiphilic cationic copolymer poly(ε-caprolactone-co-3(S)-methyl-morpholine-2,5-dione)-g-polyethyleneimine (PCLMD-g-PEI) via a heterobifunctional orthopyridyl disulfide-poly(ethylene glycol)-N-hydroxysuccinimide (OPSS-PEG-NHS) linker to prepare PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers with the aim to develop the gene carriers with low cytotoxicity and high transfection efficiency. The multitargeting micelles were prepared from PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers by self-assembly method and used to load pEGFP-ZNF580 plasmids (pDNA) to form gene complexes for enhancing the proliferation and migration of endothelial cells (ECs). The loading pDNA capacity was proved by agarose gel electrophoresis assay. These multitargeting gene complexes exhibited low cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The high internalization efficiency of these gene complexes was confirmed by flow cytometry. The results of in vitro transfection demonstrated that these multitargeting gene complexes possessed relatively high transfection efficiency. The rapid migration of ECs transfected by these gene complexes was verified by wound healing assay. Owing to ECs-targeting ability, cell-penetrating ability and nuclear targeting capacity of REDV-G-TAT-G-NLS peptide, the multitargeting polycationic gene carrier with low cytotoxicity and high transfection efficiency has great potential in gene therapy.
Key words: gene carriers; multitargeting function; ECs; transfection efficiency
Xinghong Duo , Lingchuang Bai , Jun Wang , Jintang Guo , Xiangkui Ren , Shihai Xia , Wencheng Zhang , Abraham Domb , Yakai Feng . Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(5) : 889 -901 . DOI: 10.1007/s11705-020-1919-8
1 |
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews, 2015, 44(15): 5680–5742
|
2 |
Zhang P, Ye J, Liu E, Sun L, Zhang J, Lee S J, Gong J, He H, Yang V C. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Frontiers of Chemical Science and Engineering, 2017, 11(4): 529–536
|
3 |
Yin H, Kanasty R, Eltoukhy A, Vegas A, Dorkin J, Anderson D. Non-viral vectors for gene-based therapy. Nature Reviews. Genetics, 2014, 15(8): 541–555
|
4 |
Sun J, Zeng F, Jian H, Wu S. Grafting zwitterionic polymer chains onto PEI as a convenient strategy to enhance gene delivery performance. Polymer Chemistry, 2013, 4(24): 5810–5818
|
5 |
Hu Q, Bomba H, Gu Z. Engineering platelet-mimicking drug delivery vehicles. Frontiers of Chemical Science and Engineering, 2017, 11(4): 624–632
|
6 |
Suk J S, Xu Q, Kim N, Hanes J, Ensign L M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 2016, 99: 28–51
|
7 |
Duo X, Li Q, Wang J, Lv J, Hao X, Feng Y, Ren X, Shi C, Zhang W. Core/shell gene carriers with different lengths of PLGA chains to transfect endothelial cells. Langmuir, 2017, 33(46): 13315–13325
|
8 |
de Valence S, Tille J C, Mugnai D, Mrowczynski R, Gurny R, Möller M, Walpoth B H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials, 2012, 33(1): 38–47
|
9 |
Bai L, Li Q, Duo X, Hao X, Zhang W, Shi C, Guo J, Ren X, Feng Y. Electrospun PCL-PIBMD/SF blend scaffolds with plasmid complexes for endothelial cell proliferation. RSC Advances, 2018, 7(63): 39452–39464
|
10 |
Lo Y, Chen G, Feng T, Li M, Wang L. Synthesis and characterization of S-PCL-PDMAEMA for co-delivery of pDNA and DOX. RSC Advances, 2014, 4(22): 11089–11098
|
11 |
Feng Y, Klee D, Höcker H. Lipase-catalyzed ring-opening polymerization of 6(S)-methyl-morpholine-2,5-dione. Journal of Polymer Science. Part A, 2005, 43(14): 3030–3039
|
12 |
Fonseca A, Serra A, Coelho J, Gil M, Simões P. Novel poly(ester amide)s from glycine and L-lactic acid by an easy and cost-effective synthesis. Polymer International, 2013, 62(5): 736–743
|
13 |
Shi C, Yao F, Li Q, Khan M, Ren X, Feng Y, Huang J, Zhang W. Regulation of the endothelialization by human vascular endothelial cells by ZNF580 gene complexed with biodegradable microparticles. Biomaterials, 2014, 35(25): 7133–7145
|
14 |
Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y. Nanoparticles complexed with gene vectors to promote proliferation of human vascular endothelial cells. Advanced Healthcare Materials, 2015, 4(8): 1225–1235
|
15 |
Li Q, Hao X, Lv J, Ren X, Zhang K, Ullah I, Feng Y, Shi C, Zhang W. Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(8): 1673–1687
|
16 |
Wang H, Li Q, Yang J, Guo J, Ren X, Feng Y, Zhang W. Comb-shaped polymer grafted with REDV peptide, PEG and PEI as targeting gene carrier for selective transfection of human endothelial cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2017, 5(7): 1408–1422
|
17 |
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV-Polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2016, 4(19): 3365–3376
|
18 |
Shi C, Li Q, Zhang W, Feng Y, Ren X. REDV peptide conjugated nanoparticles/pZNF580 complexes for actively targeting human vascular endothelial cells. ACS Applied Materials & Interfaces, 2015, 7(36): 20389–20399
|
19 |
Hao X, Li Q, Lv J, Yu L, Ren X, Zhang L, Feng Y, Zhang W. CREDVW-linked polymeric micelles as a targeting gene transfer vector for selective transfection and proliferation of endothelial cells. ACS Applied Materials & Interfaces, 2015, 7(22): 12128–12140
|
20 |
Wei Y, Ji Y, Xiao L, Lin Q, Xu J, Ren K, Ji J. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588–2599
|
21 |
Yu S, Gao Y, Mei X, Ren T, Liang S, Mao Z, Gao C. Preparation of an Arg-Glu-Asp-Val peptide density gradient on hyaluronic acid-coated poly(ε-caprolactone) film and its influence on the selective adhesion and directional migration of endothelial cells. ACS Applied Materials & Interfaces, 2016, 8(43): 29280–29288
|
22 |
Wang J, Li B, Li Z, Ren K, Jin L, Zhang S, Chang H, Sun Y, Ji J. Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014, 35(27): 7679–7689
|
23 |
Wei Y, Zhang J X, Ji Y, Ji J. REDV/rapamycin-loaded polymer combinations as a coordinated strategy to enhance endothelial cells selectivity for a stent system. Colloids and Surfaces. B, Biointerfaces, 2015, 136: 1166–1173
|
24 |
Copolovici D, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 2014, 8(3): 1972–1994
|
25 |
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Advanced Drug Delivery Reviews, 2016, 106: 355–366
|
26 |
Komin A, Russell L, Hristova K, Searson P. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Advanced Drug Delivery Reviews, 2017, 110-111: 52–64
|
27 |
Hao X, Li Q, Guo J, Ren X, Feng Y, Shi C, Zhang W. Multifunctional gene carriers with enhanced specific penetration and nucleus accumulation to promote neovascularization of HUVECs in vivo. ACS Applied Materials & Interfaces, 2017, 9(41): 35613–35627
|
28 |
Li Q, Hao X, Zaidi S S A, Guo J, Ren X, Shi C, Zhang W, Feng Y. Oligohistidine and targeting peptide functionalized TAT-NLS for enhancing cellular uptake and promoting angiogenesis in vivo. Journal of Nanobiotechnology, 2018, 16(1): 29
|
29 |
Hao X, Li Q, Ali H, Zaidi S, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosome escape ability for efficient intracellular delivery of plasmid DNA. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(25): 4251–4263
|
30 |
Duo X, Wang J, Li Q, Neve A, Akpanyung M, Nejjari A, Ali Z, Feng Y, Zhang W, Shi C. CAGW peptide modified biodegradable cationic copolymer for effective gene delivery. Polymers, 2017, 9(5): 158
|
/
〈 | 〉 |