REVIEW ARTICLE

A review on emulsification via microfluidic processes

  • Yichen Liu 1 ,
  • Yongli Li , 1,2 ,
  • Andreas Hensel 2 ,
  • Juergen J. Brandner 3 ,
  • Kai Zhang 1 ,
  • Xiaoze Du 1 ,
  • Yongping Yang 1
Expand
  • 1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), North China Electric Power University, Beijing 102206, China
  • 2. Institute for Micro Process Engineering, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
  • 3. Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany

Received date: 04 May 2019

Accepted date: 12 Aug 2019

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

Emulsion is a disperse system with two immiscible liquids, which demonstrates wide applications in diverse industries. Emulsification technology has advanced well with the development of microfluidic process. Compared to conventional methods, the microfluidics-based process can produce controllable droplet size and distribution. The droplet formation or breakup is the result of combined effects resulting from interfacial tension, viscous, and inertial forces as well as the forces generated due to hydrodynamic pressure and external stimuli. In the current study, typical microfluidic systems, including microchannel array, T-shape, flow-focusing, co-flowing, and membrane systems, are reviewed and the corresponding mechanisms, flow regimes, and main parameters are compared and summarized.

Cite this article

Yichen Liu , Yongli Li , Andreas Hensel , Juergen J. Brandner , Kai Zhang , Xiaoze Du , Yongping Yang . A review on emulsification via microfluidic processes[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(3) : 350 -364 . DOI: 10.1007/s11705-019-1894-0

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB1103002 and 2018YFB0604304), Federal Ministry for Economic Affairs and Energy, Germany (No. 03ET1093C), Fundamental Research Funds for the Central Universities, China (No. 2017MS011), and the National Natural Science Foundation of China (Grant No. 51821004).
1
Zhao C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 2013, 65(11-12): 1420–1446

DOI

2
Ran R, Sun Q, Baby T, Wibowo D, Middelberg A P, Zhao C X. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications. Chemical Engineering Science, 2017, 169: 78–96

DOI

3
Maeki M. Microfluidics for pharmaceutical applications. Microfluidics for Pharmaceutical Applications. Amsterdam: Elsevier, 2019, 101–119

4
Muijlwijk K, Berton-Carabin C, Schroën K. Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology, 2016, 49: 51–63

DOI

5
Gunes D Z. Microfluidics for food science and engineering. Current Opinion in Food Science, 2018, 21: 57–65

DOI

6
Gilbert L, Picard C, Savary G, Grisel M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 421: 150–163

DOI

7
Ferreira A, Vecino X, Ferreira D, Cruz J, Moldes A, Rodrigues L. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces. B, Biointerfaces, 2017, 155: 522–529

DOI

8
Preetika R, Mehta P S, Kaisare N S, Basavaraj M G. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel, 2019, 236: 1415–1422

DOI

9
Sun G, Zhang J, Ma C, Wang X. Start-up flow behavior of pipelines transporting waxy crude oil emulsion. Journal of Petroleum Science Engineering, 2016, 147: 746–755

DOI

10
Zhang M, Wang W, Xie R, Ju X, Liu Z, Jiang L, Chen Q, Chu L. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology, 2016, 24: 18–31

DOI

11
Parker A P, Reynolds P A, Lewis A L, Hughes L. Semi-continuous emulsion co-polymerisation of methylmethacrylate and butylacrylate using zwitterionic surfactants as emulsifiers: Evidence of coagulative nucleation above the critical micelle concentration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 268(1): 162–174

DOI

12
Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. Journal of Controlled Release, 2005, 106(1-2): 62–75

DOI

13
Choi C H, Jung J H, Kim D W, Chung Y M, Lee C S. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab on a Chip, 2008, 8(9): 1544

DOI

14
Shah R K, Kim J W, Agresti J J, Weitz D A, Chu L Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4(12): 2303

DOI

15
Singh D, Sharma R. Post harvest wax coating of kinnow fruits to retain quality during. Storage Agricultural Engineering Today, 2007, 31(2): 232–238

16
Cameron J C, Fischer C A, Lehman N C, Lindquist J S, Olson C E, Fox S A. Hot melt adhesive pellet comprising continuous coating of pelletizing aid. US Patent, 6120899, 2000-09-19

17
Kabal’Nov A S, Pertzov A V, Shchukin E D. Ostwald ripening in two-component disperse phase systems: Application to emulsion stability. Colloids and Surfaces, 1987, 24(1): 19–32

DOI

18
Bibette J, Mason T G, Gang H, Weitz D A, Poulin P. Structure of adhesive emulsions. Langmuir, 1993, 9(12): 3352–3356

DOI

19
Mason T G. New fundamental concepts in emulsion rheology. Current Opinion in Colloid & Interface Science, 1999, 4(3): 231–238

DOI

20
Tiwary C, Kishore S, Vasireddi R, Mahapatra D, Ajayan P, Chattopadhyay K. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Materials Today, 2017, 20(2): 67–73

DOI

21
Fernández-Ávila C, Escriu R, Trujillo A. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International, 2015, 75: 357–366

DOI

22
Trujillo-Cayado L A, Alfaro M C, García M, Muñoz J. Comparison of homogenization processes for the development of green O/W emulsions formulated with N, N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46: 54–61

DOI

23
McClements D J. Food Emulsions: Principles, Practices, and Techniques. 3rd ed. Florida: CRC Press, 2015, 245–288

24
Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005, 77(3): 977–1026

DOI

25
Geczy R, Agnoletti M, Hansen M F, Kutter J P, Saatchi K, Häfeli U O. Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. Journal of Magnetism and Magnetic Materials, 2019, 471: 286–293

DOI

26
Li Y, Wengerter M, Gerken I, Nieder H, Scholl S, Brandner J J. Development of an efficient emulsification process using miniaturized process engineering equipment. Chemical Engineering Research & Design, 2016, 108: 23–29

DOI

27
Li Y, Gerken I, Hensel A, Kraut M, Brandner J J. Development of a continuous emulsification process for a highly viscous dispersed phase using microstructured devices. Green Processing and Synthesis, 2013, 2(5): 499–507

DOI

28
Wennerstrom H, Balogh J, Olsson U. Interfacial tensions in microemulsions. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2006, 291(1-3): 69–77

29
Diez J, Gratton R, Thomas L, Marino B. Laplace pressure-driven drop spreading: Quasi-self-similar solution. Journal of Colloid and Interface Science, 1994, 168(1): 15–20

DOI

30
Lyklema J. Fundamentals of Interface and Colloid Science. 1st ed. Amsterdam: Elsevier, 2005, 1.1–1.1.6

31
Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999, 285(5424): 83–85

DOI

32
Stone H A. Dynamics of drop deformation and breakup in viscous fluids. Annual Review of Fluid Mechanics, 1994, 26(1): 65–102

DOI

33
Stewart W E Jr, Dona C L G. Low Rayleigh number flow in a heat generating porous media. International Communications in Heat and Mass Transfer, 1986, 13(3): 281–294

DOI

34
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108-109: 303–318

DOI

35
Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. Journal of the American Oil Chemists’ Society, 1997, 74(3): 317–321

DOI

36
Kawakatsu T, Komori H, Nakajima M, Kikuchi Y, Yonemoto T. Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. Journal of Chemical Engineering of Japan, 1999, 32(2): 241–244

DOI

37
Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluidics and Nanofluidics, 2008, 4(3): 167–177

DOI

38
Kobayashi I, Uemura K, Nakajima M. CFD analysis of generation of soybean oil-in-water emulsion droplets using rectangular straight-through microchannels. Food Science and Technology Research, 2007, 13(3): 187–192

DOI

39
Kobayashi I, Mukataka S, Nakajima M. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. Journal of Colloid and Interface Science, 2004, 279(1): 277–280

DOI

40
Kobayashi I, Nakajima M, Nabetani H, Kikuchi Y, Shohno A, Satoh K. Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. Journal of the American Oil Chemists’ Society, 2001, 78(8): 797–802

DOI

41
Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fukita H. Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(8): 1639–1644

DOI

42
Sugiura S, Nakajima M, Tong J H, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103

DOI

43
Sugiura S, Nakajima M, Seki M. Effect of channel structure on microchannel emulsification. Langmuir, 2002, 18(15): 5708–5712

DOI

44
Sugiura S, Nakajima M, Iwamoto S, Seki M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir, 2001, 17(18): 5562–5566

DOI

45
Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. Journal of Physical Chemistry B, 2002, 106(36): 9405–9409

DOI

46
Sugiura S, Nakajima M, Seki M. Preparation of monodispersed emulsion with large droplets using microchannel emulsification. Journal of the American Oil Chemists’ Society, 2002, 79(5): 515–519

DOI

47
Treesuwan W, Neves M A, Uemura K, Nakajima M, Kobayashi I. Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT, 2017, 84: 617–625

DOI

48
De Menech M, Garstecki P, Jousse F, Stone H A. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161

DOI

49
Okushima S, Nisisako T, Torii T, Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905–9908

DOI

50
Xu Q Y, Nakajima M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Applied Physics Letters, 2004, 85(17): 3726–3728

DOI

51
Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir, 2006, 22(19): 7943–7946

DOI

52
Mora A E M, de Lima e Silva A L F, de Lima e Silva S M M. Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM. Chemical Engineering Science, 2019, 196: 514–526

DOI

53
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166

DOI

54
Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie International Edition, 2005, 44(17): 2520–2523

DOI

55
Günther A, Khan S A, Thalmann M, Trachsel F, Jensen K F. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 2004, 4(4): 278–286

DOI

56
Sabri F, Lakis A A. Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression. Aerospace Science and Technology, 2011, 15(4): 237–248

DOI

57
Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE Journal. American Institute of Chemical Engineers, 2006, 52(9): 3005–3010

DOI

58
Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006, 6(3): 437–446

DOI

59
Zhao C X, Middelberg A P J. Two-phase microfluidic flows. Chemical Engineering Science, 2011, 66(7): 1394–1411

DOI

60
Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36(1): 381–411

DOI

61
Oishi M, Kinoshita H, Fujii T, Oshima M. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. Journal of Physics: Conference Series, 2009, 147: 012061

DOI

62
De Menech M, Garstecki P, Jousse F, Stone H. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161

DOI

63
Van der Graaf S, Steegmans M, Van Der Sman R, Schroën C, Boom R. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 266(1-3): 106–116

DOI

64
Oishi M, Kinoshita H, Oshima M, Fujii T. Investigation of micro droplet formation in a T-shaped junction using multicolor confocal micro PIV. In: Proceedings of MNHT2008. ASME, 2008, 297–301

65
Li X B, Li F C, Yang J C, Kinoshita H, Oishi M, Oshima M. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 2012, 69(1): 340–351

DOI

66
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601

DOI

67
Rayleigh L. On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879, 29(196-199): 71–97

DOI

68
Xu J H, Luo G S, Li S W, Chen G G. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006, 6(1): 131–136

DOI

69
Lignel S, Salsac A V, Drelich A, Leclerc E, Pezron I. Water-in-oil droplet formation in a flow-focusing microsystem using pressure-and flow rate-driven pumps. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 531: 164–172

DOI

70
Hamlington B D, Steinhaus B, Feng J J, Link D, Shelley M J, Shen A Q. Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34(7): 861–870

DOI

71
Yobas L, Martens S, Ong W L, Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab on a Chip, 2006, 6(8): 1073–1079

DOI

72
Moon B U, Abbasi N, Jones S G, Hwang D K, Tsai S S. Water-in-water droplets by passive microfluidic flow focusing. Analytical Chemistry, 2016, 88(7): 3982–3989

DOI

73
Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003, 82(3): 364–366

DOI

74
Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device. Physics of Fluids, 2006, 18(12): 121512

DOI

75
Lee W, Walker L M, Anna S L. Impact of viscosity ratio on the dynamics of droplet breakup in a microfluidic flow focusing device. In: Co A, Leal L G, Colby R H, Giacomin A J, eds. XVth International Congress on Rheology—the Society of Rheology 80th Annual Meeting. American Institute of Physics, 2008, 994–996

76
Lee W, Walker L M, Anna S L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, 21(3): 032103

DOI

77
Anna S L. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016, 48(1): 285–309

DOI

78
Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 2005, 94(16): 164501

DOI

79
Zhou C, Yue P, Feng J J. Formation of simple and compound drops in microfluidic devices. Physics of Fluids, 2006, 18(9): 092105

DOI

80
Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007, 40(19): R319–R336

81
Nunes J K, Tsai S S H, Wan J, Stone H A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied Physics, 2013, 46(11): 114002–114020

DOI

82
Fu T, Wu Y, Ma Y, Li H Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84: 207–217

DOI

83
Wu P, Luo Z, Liu Z, Li Z, Chen C, Feng L, He L. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2015, 23(1): 7–14

DOI

84
Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537–541

DOI

85
Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A. Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters, 2007, 99(9): 094502

DOI

86
Gañán-Calvo A M. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing. Journal of Fluid Mechanics, 2006, 553: 75–84

DOI

87
Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1–8

DOI

88
Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, 59(15): 3045–3058

DOI

89
Suryo R, Basaran O A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Physics of Fluids, 2006, 18(8): 082102

DOI

90
Villermaux E, Hopfinger E. Periodically arranged co-flowing jets. Journal of Fluid Mechanics, 1994, 263: 63–92

DOI

91
Wu L, Chen Y. Visualization study of emulsion droplet formation in a coflowing microchannel. Chemical Engineering and Processing: Process Intensification, 2014, 85: 77–85

DOI

92
He Y, Battat S, Fan J, Abbaspourrad A, Weitz D A. Preparation of microparticles through co-flowing of partially miscible liquids. Chemical Engineering Journal, 2017, 320: 144–150

DOI

93
Hua J, Zhang B, Lou J. Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(10): 2534–2548

DOI

94
Castro-hernández E, Gundabala V, Fernández-nieves A, Gordillo J M. Scaling the drop size in coflow experiments. New Journal of Physics, 2009, 11(7): 075021

DOI

95
Vladisavljevic G T, Williams R A. Manufacture of large uniform droplets using rotating membrane emulsification. Journal of Colloid and Interface Science, 2006, 299(1): 396–402

DOI

96
Joscelyne S M, Tragardh G. Membrane emulsification—a literature review. Journal of Membrane Science, 2000, 169(1): 107–117

DOI

97
Charcosset C, Limayem I, Fessi H. The membrane emulsification process—a review. Journal of Chemical Technology & Biotechnology: International Research in Process. Environmental & Clean Technology, 2004, 79(3): 209–218

98
De Luca G, Sindona A, Giorno L, Drioli E. Quantitative analysis of coupling effects in cross-flow membrane emulsification. Journal of Membrane Science, 2004, 229(1-2): 199–209

DOI

99
Drioli E, Giorno L. Membrane operations. Simulation, 2009, 1: 1

100
Sharma S, Shukla P, Misra A, Mishra P R. Chapter 8. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. In: Colloid & Interface Science in Pharmaceutical Research & Development. Amsterdam: Elsevier, 2014, 149–172

101
Schroder V, Behrend O, Schubert H. Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. Journal of Colloid and Interface Science, 1998, 202(2): 334–340

DOI

102
Wang K, Lu Y C, Xu J H, Luo G S. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir, 2009, 25(4): 2153–2158

DOI

103
Mozafarpour R, Koocheki A, Milani E, Varidi M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 2019, 93: 361–373

DOI

104
van Dijke K, Kobayashi I, Schroen K, Uemura K, Nakajima M, Boom R. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9(1): 77–85

DOI

105
Wu N, Zhu Y, Leech P W, Sexton B A, Brown S, Easton C. Effects of surfactants on the formation of microdroplets in the flow focusing microfluidic device. In:  Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE2007, 6799: U84–U91

106
Vlahovska P M, Danov K D, Mehreteab A, Broze G. Adsorption kinetics of ionic surfactants with detailed account for the electrostatic interactions. Journal of Colloid and Interface Science, 1997, 192(1): 194–206

DOI

107
Sasaki M, Yasunaga T, Satake S, Ashida M. Kinetic studies on double relaxation of surfactant solutions using a capillary wave method. Bulletin of the Chemical Society of Japan, 1977, 50(12): 3144–3148

DOI

108
El-Abbassi A, Neves M A, Kobayashi I, Hafidi A, Nakajima M. Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification. European Journal of Lipid Science and Technology, 2013, 115(2): 224–231

DOI

109
Eggleton C D, Tsai T M, Stebe K J. Tip streaming from a drop in the presence of surfactants. Physical Review Letters, 2001, 87(4): 048302

DOI

110
Bracco G, Holst B. Surface Science Techniques. 1st ed. Berlin: Springer, 2013, 3–34

111
Hu S, Ren X, Bachman M, Sims C E, Li G P, Allbritton N L. Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry, 2004, 76(7): 1865–1870 doi:10.1021/ac049937z

112
Barrat J L, Bocquet L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 1999, 112: 119–127

DOI

113
Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 2003, 90(14): 144505

DOI

114
Nie Z, Seo M, Xu S, Lewis P C, Mok M, Kumacheva E, Whitesides G M, Garstecki P, Stone H A. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5(5): 585–594

DOI

115
Fournanty S, Guer Y L, Omari K E, Dejean J P. Laminar flow emulsification process to control the viscosity reduction of heavy crude oils. Journal of Dispersion Science and Technology, 2008, 29(10): 1355–1366

DOI

116
Farokhirad S, Lee T, Morris J F. Effects of inertia and viscosity on single droplet deformation in confined shear flow. Communications in Computational Physics, 2015, 13(3): 706–724

DOI

117
Eggers R. Industrial High Pressure Applications, Processes, Equipment and Safety. 1st ed. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012, 97–122

118
Chwalek J M, Trauernicht D P, Delametter C N, Sharma R, Jeanmaire D L, Anagnostopoulos C N, Hawkins G A, Ambravaneswaran B, Panditaratne J C, Basaran O A. A new method for deflecting liquid microjets. Physics of Fluids, 2002, 14(6): L37–L40

DOI

119
Xu J H, Li S W, Tan J, Luo G S. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008, 5(6): 711–717

DOI

120
Hong Y, Wang F. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics, 2007, 3(3): 341–346

DOI

121
Wright P. The variation of viscosity with temperature. Physics Education, 1977, 12(5): 323–325

DOI

122
Wengerter M, Li Y, Nieder H, Brandner J J, Schoenitz M, Scholl S. Energy and resource efficient continuous production of a binder emulsion using microstructured devices. Chemical Engineering and Processing: Process Intensification, 2017, 122: 319–329

DOI

123
Fujiu K B, Kobayashi I, Neves M A, Uemura K, Nakajima M. Effect of temperature on production of soybean oil-in-water emulsions by microchannel emulsification using different emulsifiers. Food Science and Technology Research, 2011, 17(2): 77–86

DOI

124
Mahajan R K, Chawla J, Bakshi M S. Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid & Polymer Science, 2004, 282(10): 1165–1168

DOI

125
Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. Journal of Physical Chemistry, 1964, 68(12): 3485–3490

DOI

126
Shinoda K, Saito H. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. Journal of Colloid and Interface Science, 1969, 30(2): 258–263

DOI

127
Stan C A, Tang S K Y, Whitesides G M. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Analytical Chemistry, 2009, 81(6): 2399–2402

DOI

128
Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 2004, 507(1): 73–77

DOI

129
Nguyen N T, Ting T H, Yap Y F, Wong T N, Chai J C K, Ong W L, Zhou J, Tan S H, Yobas L. Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91(8): 084102

DOI

130
Zhou Z, Kong T, Mkaouar H, Salama K N, Zhang J M. A hybrid modular microfluidic device for emulsion generation. Sensors and Actuators. A, Physical, 2018, 280: 422–428

DOI

131
Kanai T, Tsuchiya M. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chemical Engineering Journal, 2016, 290: 400–404

DOI

Outlines

/