Frontiers of Chemical Science and Engineering >
A review on emulsification via microfluidic processes
Received date: 04 May 2019
Accepted date: 12 Aug 2019
Published date: 15 Jun 2020
Copyright
Emulsion is a disperse system with two immiscible liquids, which demonstrates wide applications in diverse industries. Emulsification technology has advanced well with the development of microfluidic process. Compared to conventional methods, the microfluidics-based process can produce controllable droplet size and distribution. The droplet formation or breakup is the result of combined effects resulting from interfacial tension, viscous, and inertial forces as well as the forces generated due to hydrodynamic pressure and external stimuli. In the current study, typical microfluidic systems, including microchannel array, T-shape, flow-focusing, co-flowing, and membrane systems, are reviewed and the corresponding mechanisms, flow regimes, and main parameters are compared and summarized.
Key words: microfluidics; emulsification; capillary number; droplet breakup
Yichen Liu , Yongli Li , Andreas Hensel , Juergen J. Brandner , Kai Zhang , Xiaoze Du , Yongping Yang . A review on emulsification via microfluidic processes[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(3) : 350 -364 . DOI: 10.1007/s11705-019-1894-0
1 |
Zhao C X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 2013, 65(11-12): 1420–1446
|
2 |
Ran R, Sun Q, Baby T, Wibowo D, Middelberg A P, Zhao C X. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications. Chemical Engineering Science, 2017, 169: 78–96
|
3 |
Maeki M. Microfluidics for pharmaceutical applications. Microfluidics for Pharmaceutical Applications. Amsterdam: Elsevier, 2019, 101–119
|
4 |
Muijlwijk K, Berton-Carabin C, Schroën K. Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology, 2016, 49: 51–63
|
5 |
Gunes D Z. Microfluidics for food science and engineering. Current Opinion in Food Science, 2018, 21: 57–65
|
6 |
Gilbert L, Picard C, Savary G, Grisel M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: Relationships between both data. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2013, 421: 150–163
|
7 |
Ferreira A, Vecino X, Ferreira D, Cruz J, Moldes A, Rodrigues L. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids and Surfaces. B, Biointerfaces, 2017, 155: 522–529
|
8 |
Preetika R, Mehta P S, Kaisare N S, Basavaraj M G. Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel, 2019, 236: 1415–1422
|
9 |
Sun G, Zhang J, Ma C, Wang X. Start-up flow behavior of pipelines transporting waxy crude oil emulsion. Journal of Petroleum Science Engineering, 2016, 147: 746–755
|
10 |
Zhang M, Wang W, Xie R, Ju X, Liu Z, Jiang L, Chen Q, Chu L. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology, 2016, 24: 18–31
|
11 |
Parker A P, Reynolds P A, Lewis A L, Hughes L. Semi-continuous emulsion co-polymerisation of methylmethacrylate and butylacrylate using zwitterionic surfactants as emulsifiers: Evidence of coagulative nucleation above the critical micelle concentration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 268(1): 162–174
|
12 |
Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. Journal of Controlled Release, 2005, 106(1-2): 62–75
|
13 |
Choi C H, Jung J H, Kim D W, Chung Y M, Lee C S. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab on a Chip, 2008, 8(9): 1544
|
14 |
Shah R K, Kim J W, Agresti J J, Weitz D A, Chu L Y. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter, 2008, 4(12): 2303
|
15 |
Singh D, Sharma R. Post harvest wax coating of kinnow fruits to retain quality during. Storage Agricultural Engineering Today, 2007, 31(2): 232–238
|
16 |
Cameron J C, Fischer C A, Lehman N C, Lindquist J S, Olson C E, Fox S A. Hot melt adhesive pellet comprising continuous coating of pelletizing aid. US Patent, 6120899, 2000-09-19
|
17 |
Kabal’Nov A S, Pertzov A V, Shchukin E D. Ostwald ripening in two-component disperse phase systems: Application to emulsion stability. Colloids and Surfaces, 1987, 24(1): 19–32
|
18 |
Bibette J, Mason T G, Gang H, Weitz D A, Poulin P. Structure of adhesive emulsions. Langmuir, 1993, 9(12): 3352–3356
|
19 |
Mason T G. New fundamental concepts in emulsion rheology. Current Opinion in Colloid & Interface Science, 1999, 4(3): 231–238
|
20 |
Tiwary C, Kishore S, Vasireddi R, Mahapatra D, Ajayan P, Chattopadhyay K. Electronic waste recycling via cryo-milling and nanoparticle beneficiation. Materials Today, 2017, 20(2): 67–73
|
21 |
Fernández-Ávila C, Escriu R, Trujillo A. Ultra-high pressure homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Research International, 2015, 75: 357–366
|
22 |
Trujillo-Cayado L A, Alfaro M C, García M, Muñoz J. Comparison of homogenization processes for the development of green O/W emulsions formulated with N, N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46: 54–61
|
23 |
McClements D J. Food Emulsions: Principles, Practices, and Techniques. 3rd ed. Florida: CRC Press, 2015, 245–288
|
24 |
Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005, 77(3): 977–1026
|
25 |
Geczy R, Agnoletti M, Hansen M F, Kutter J P, Saatchi K, Häfeli U O. Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. Journal of Magnetism and Magnetic Materials, 2019, 471: 286–293
|
26 |
Li Y, Wengerter M, Gerken I, Nieder H, Scholl S, Brandner J J. Development of an efficient emulsification process using miniaturized process engineering equipment. Chemical Engineering Research & Design, 2016, 108: 23–29
|
27 |
Li Y, Gerken I, Hensel A, Kraut M, Brandner J J. Development of a continuous emulsification process for a highly viscous dispersed phase using microstructured devices. Green Processing and Synthesis, 2013, 2(5): 499–507
|
28 |
Wennerstrom H, Balogh J, Olsson U. Interfacial tensions in microemulsions. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2006, 291(1-3): 69–77
|
29 |
Diez J, Gratton R, Thomas L, Marino B. Laplace pressure-driven drop spreading: Quasi-self-similar solution. Journal of Colloid and Interface Science, 1994, 168(1): 15–20
|
30 |
Lyklema J. Fundamentals of Interface and Colloid Science. 1st ed. Amsterdam: Elsevier, 2005, 1.1–1.1.6
|
31 |
Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 1999, 285(5424): 83–85
|
32 |
Stone H A. Dynamics of drop deformation and breakup in viscous fluids. Annual Review of Fluid Mechanics, 1994, 26(1): 65–102
|
33 |
Stewart W E Jr, Dona C L G. Low Rayleigh number flow in a heat generating porous media. International Communications in Heat and Mass Transfer, 1986, 13(3): 281–294
|
34 |
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 2004, 108-109: 303–318
|
35 |
Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. Journal of the American Oil Chemists’ Society, 1997, 74(3): 317–321
|
36 |
Kawakatsu T, Komori H, Nakajima M, Kikuchi Y, Yonemoto T. Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. Journal of Chemical Engineering of Japan, 1999, 32(2): 241–244
|
37 |
Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluidics and Nanofluidics, 2008, 4(3): 167–177
|
38 |
Kobayashi I, Uemura K, Nakajima M. CFD analysis of generation of soybean oil-in-water emulsion droplets using rectangular straight-through microchannels. Food Science and Technology Research, 2007, 13(3): 187–192
|
39 |
Kobayashi I, Mukataka S, Nakajima M. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. Journal of Colloid and Interface Science, 2004, 279(1): 277–280
|
40 |
Kobayashi I, Nakajima M, Nabetani H, Kikuchi Y, Shohno A, Satoh K. Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification. Journal of the American Oil Chemists’ Society, 2001, 78(8): 797–802
|
41 |
Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fukita H. Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(8): 1639–1644
|
42 |
Sugiura S, Nakajima M, Tong J H, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103
|
43 |
Sugiura S, Nakajima M, Seki M. Effect of channel structure on microchannel emulsification. Langmuir, 2002, 18(15): 5708–5712
|
44 |
Sugiura S, Nakajima M, Iwamoto S, Seki M. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir, 2001, 17(18): 5562–5566
|
45 |
Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M. Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. Journal of Physical Chemistry B, 2002, 106(36): 9405–9409
|
46 |
Sugiura S, Nakajima M, Seki M. Preparation of monodispersed emulsion with large droplets using microchannel emulsification. Journal of the American Oil Chemists’ Society, 2002, 79(5): 515–519
|
47 |
Treesuwan W, Neves M A, Uemura K, Nakajima M, Kobayashi I. Preparation characteristics of monodisperse oil-in-water emulsions by microchannel emulsification using different essential oils. LWT, 2017, 84: 617–625
|
48 |
De Menech M, Garstecki P, Jousse F, Stone H A. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161
|
49 |
Okushima S, Nisisako T, Torii T, Higuchi T. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20(23): 9905–9908
|
50 |
Xu Q Y, Nakajima M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Applied Physics Letters, 2004, 85(17): 3726–3728
|
51 |
Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir, 2006, 22(19): 7943–7946
|
52 |
Mora A E M, de Lima e Silva A L F, de Lima e Silva S M M. Numerical study of the dynamics of a droplet in a T-junction microchannel using OpenFOAM. Chemical Engineering Science, 2019, 196: 514–526
|
53 |
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166
|
54 |
Zheng B, Ismagilov R F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angewandte Chemie International Edition, 2005, 44(17): 2520–2523
|
55 |
Günther A, Khan S A, Thalmann M, Trachsel F, Jensen K F. Transport and reaction in microscale segmented gas-liquid flow. Lab on a Chip, 2004, 4(4): 278–286
|
56 |
Sabri F, Lakis A A. Hydroelastic vibration of partially liquid-filled circular cylindrical shells under combined internal pressure and axial compression. Aerospace Science and Technology, 2011, 15(4): 237–248
|
57 |
Xu J H, Li S W, Tan J, Wang Y J, Luo G S. Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE Journal. American Institute of Chemical Engineers, 2006, 52(9): 3005–3010
|
58 |
Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 2006, 6(3): 437–446
|
59 |
Zhao C X, Middelberg A P J. Two-phase microfluidic flows. Chemical Engineering Science, 2011, 66(7): 1394–1411
|
60 |
Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004, 36(1): 381–411
|
61 |
Oishi M, Kinoshita H, Fujii T, Oshima M. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction. Journal of Physics: Conference Series, 2009, 147: 012061
|
62 |
De Menech M, Garstecki P, Jousse F, Stone H. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141–161
|
63 |
Van der Graaf S, Steegmans M, Van Der Sman R, Schroën C, Boom R. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 266(1-3): 106–116
|
64 |
Oishi M, Kinoshita H, Oshima M, Fujii T. Investigation of micro droplet formation in a T-shaped junction using multicolor confocal micro PIV. In: Proceedings of MNHT2008. ASME, 2008, 297–301
|
65 |
Li X B, Li F C, Yang J C, Kinoshita H, Oishi M, Oshima M. Study on the mechanism of droplet formation in T-junction microchannel. Chemical Engineering Science, 2012, 69(1): 340–351
|
66 |
Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601
|
67 |
Rayleigh L. On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879, 29(196-199): 71–97
|
68 |
Xu J H, Luo G S, Li S W, Chen G G. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006, 6(1): 131–136
|
69 |
Lignel S, Salsac A V, Drelich A, Leclerc E, Pezron I. Water-in-oil droplet formation in a flow-focusing microsystem using pressure-and flow rate-driven pumps. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 531: 164–172
|
70 |
Hamlington B D, Steinhaus B, Feng J J, Link D, Shelley M J, Shen A Q. Liquid crystal droplet production in a microfluidic device. Liquid Crystals, 2007, 34(7): 861–870
|
71 |
Yobas L, Martens S, Ong W L, Ranganathan N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab on a Chip, 2006, 6(8): 1073–1079
|
72 |
Moon B U, Abbasi N, Jones S G, Hwang D K, Tsai S S. Water-in-water droplets by passive microfluidic flow focusing. Analytical Chemistry, 2016, 88(7): 3982–3989
|
73 |
Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003, 82(3): 364–366
|
74 |
Anna S L, Mayer H C. Microscale tipstreaming in a microfluidic flow focusing device. Physics of Fluids, 2006, 18(12): 121512
|
75 |
Lee W, Walker L M, Anna S L. Impact of viscosity ratio on the dynamics of droplet breakup in a microfluidic flow focusing device. In: Co A, Leal L G, Colby R H, Giacomin A J, eds. XVth International Congress on Rheology—the Society of Rheology 80th Annual Meeting. American Institute of Physics, 2008, 994–996
|
76 |
Lee W, Walker L M, Anna S L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, 21(3): 032103
|
77 |
Anna S L. Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016, 48(1): 285–309
|
78 |
Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Physical Review Letters, 2005, 94(16): 164501
|
79 |
Zhou C, Yue P, Feng J J. Formation of simple and compound drops in microfluidic devices. Physics of Fluids, 2006, 18(9): 092105
|
80 |
Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007, 40(19): R319–R336
|
81 |
Nunes J K, Tsai S S H, Wan J, Stone H A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of Physics D: Applied Physics, 2013, 46(11): 114002–114020
|
82 |
Fu T, Wu Y, Ma Y, Li H Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84: 207–217
|
83 |
Wu P, Luo Z, Liu Z, Li Z, Chen C, Feng L, He L. Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering, 2015, 23(1): 7–14
|
84 |
Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308(5721): 537–541
|
85 |
Utada A S, Fernandez-Nieves A, Stone H A, Weitz D A. Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters, 2007, 99(9): 094502
|
86 |
Gañán-Calvo A M. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing. Journal of Fluid Mechanics, 2006, 553: 75–84
|
87 |
Deng C, Wang H, Huang W, Cheng S. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1–8
|
88 |
Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004, 59(15): 3045–3058
|
89 |
Suryo R, Basaran O A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Physics of Fluids, 2006, 18(8): 082102
|
90 |
Villermaux E, Hopfinger E. Periodically arranged co-flowing jets. Journal of Fluid Mechanics, 1994, 263: 63–92
|
91 |
Wu L, Chen Y. Visualization study of emulsion droplet formation in a coflowing microchannel. Chemical Engineering and Processing: Process Intensification, 2014, 85: 77–85
|
92 |
He Y, Battat S, Fan J, Abbaspourrad A, Weitz D A. Preparation of microparticles through co-flowing of partially miscible liquids. Chemical Engineering Journal, 2017, 320: 144–150
|
93 |
Hua J, Zhang B, Lou J. Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(10): 2534–2548
|
94 |
Castro-hernández E, Gundabala V, Fernández-nieves A, Gordillo J M. Scaling the drop size in coflow experiments. New Journal of Physics, 2009, 11(7): 075021
|
95 |
Vladisavljevic G T, Williams R A. Manufacture of large uniform droplets using rotating membrane emulsification. Journal of Colloid and Interface Science, 2006, 299(1): 396–402
|
96 |
Joscelyne S M, Tragardh G. Membrane emulsification—a literature review. Journal of Membrane Science, 2000, 169(1): 107–117
|
97 |
Charcosset C, Limayem I, Fessi H. The membrane emulsification process—a review. Journal of Chemical Technology & Biotechnology: International Research in Process. Environmental & Clean Technology, 2004, 79(3): 209–218
|
98 |
De Luca G, Sindona A, Giorno L, Drioli E. Quantitative analysis of coupling effects in cross-flow membrane emulsification. Journal of Membrane Science, 2004, 229(1-2): 199–209
|
99 |
Drioli E, Giorno L. Membrane operations. Simulation, 2009, 1: 1
|
100 |
Sharma S, Shukla P, Misra A, Mishra P R. Chapter 8. Interfacial and colloidal properties of emulsified systems: Pharmaceutical and biological perspective. In: Colloid & Interface Science in Pharmaceutical Research & Development. Amsterdam: Elsevier, 2014, 149–172
|
101 |
Schroder V, Behrend O, Schubert H. Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. Journal of Colloid and Interface Science, 1998, 202(2): 334–340
|
102 |
Wang K, Lu Y C, Xu J H, Luo G S. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process. Langmuir, 2009, 25(4): 2153–2158
|
103 |
Mozafarpour R, Koocheki A, Milani E, Varidi M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocolloids, 2019, 93: 361–373
|
104 |
van Dijke K, Kobayashi I, Schroen K, Uemura K, Nakajima M, Boom R. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluidics and Nanofluidics, 2010, 9(1): 77–85
|
105 |
Wu N, Zhu Y, Leech P W, Sexton B A, Brown S, Easton C. Effects of surfactants on the formation of microdroplets in the flow focusing microfluidic device. In: Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE2007, 6799: U84–U91
|
106 |
Vlahovska P M, Danov K D, Mehreteab A, Broze G. Adsorption kinetics of ionic surfactants with detailed account for the electrostatic interactions. Journal of Colloid and Interface Science, 1997, 192(1): 194–206
|
107 |
Sasaki M, Yasunaga T, Satake S, Ashida M. Kinetic studies on double relaxation of surfactant solutions using a capillary wave method. Bulletin of the Chemical Society of Japan, 1977, 50(12): 3144–3148
|
108 |
El-Abbassi A, Neves M A, Kobayashi I, Hafidi A, Nakajima M. Preparation and characterization of highly stable monodisperse argan oil-in-water emulsions using microchannel emulsification. European Journal of Lipid Science and Technology, 2013, 115(2): 224–231
|
109 |
Eggleton C D, Tsai T M, Stebe K J. Tip streaming from a drop in the presence of surfactants. Physical Review Letters, 2001, 87(4): 048302
|
110 |
Bracco G, Holst B. Surface Science Techniques. 1st ed. Berlin: Springer, 2013, 3–34
|
111 |
Hu S, Ren X, Bachman M, Sims C E, Li G P, Allbritton N L. Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry, 2004, 76(7): 1865–1870 doi:10.1021/ac049937z
|
112 |
Barrat J L, Bocquet L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 1999, 112: 119–127
|
113 |
Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels. Physical Review Letters, 2003, 90(14): 144505
|
114 |
Nie Z, Seo M, Xu S, Lewis P C, Mok M, Kumacheva E, Whitesides G M, Garstecki P, Stone H A. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5(5): 585–594
|
115 |
Fournanty S, Guer Y L, Omari K E, Dejean J P. Laminar flow emulsification process to control the viscosity reduction of heavy crude oils. Journal of Dispersion Science and Technology, 2008, 29(10): 1355–1366
|
116 |
Farokhirad S, Lee T, Morris J F. Effects of inertia and viscosity on single droplet deformation in confined shear flow. Communications in Computational Physics, 2015, 13(3): 706–724
|
117 |
Eggers R. Industrial High Pressure Applications, Processes, Equipment and Safety. 1st ed. Weinheim: Wiley-VCH Verlag & Co. KGaA, 2012, 97–122
|
118 |
Chwalek J M, Trauernicht D P, Delametter C N, Sharma R, Jeanmaire D L, Anagnostopoulos C N, Hawkins G A, Ambravaneswaran B, Panditaratne J C, Basaran O A. A new method for deflecting liquid microjets. Physics of Fluids, 2002, 14(6): L37–L40
|
119 |
Xu J H, Li S W, Tan J, Luo G S. Correlations of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008, 5(6): 711–717
|
120 |
Hong Y, Wang F. Flow rate effect on droplet control in a co-flowing microfluidic device. Microfluidics and Nanofluidics, 2007, 3(3): 341–346
|
121 |
Wright P. The variation of viscosity with temperature. Physics Education, 1977, 12(5): 323–325
|
122 |
Wengerter M, Li Y, Nieder H, Brandner J J, Schoenitz M, Scholl S. Energy and resource efficient continuous production of a binder emulsion using microstructured devices. Chemical Engineering and Processing: Process Intensification, 2017, 122: 319–329
|
123 |
Fujiu K B, Kobayashi I, Neves M A, Uemura K, Nakajima M. Effect of temperature on production of soybean oil-in-water emulsions by microchannel emulsification using different emulsifiers. Food Science and Technology Research, 2011, 17(2): 77–86
|
124 |
Mahajan R K, Chawla J, Bakshi M S. Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid & Polymer Science, 2004, 282(10): 1165–1168
|
125 |
Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. Journal of Physical Chemistry, 1964, 68(12): 3485–3490
|
126 |
Shinoda K, Saito H. The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: The emulsification by PIT-method. Journal of Colloid and Interface Science, 1969, 30(2): 258–263
|
127 |
Stan C A, Tang S K Y, Whitesides G M. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Analytical Chemistry, 2009, 81(6): 2399–2402
|
128 |
Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Analytica Chimica Acta, 2004, 507(1): 73–77
|
129 |
Nguyen N T, Ting T H, Yap Y F, Wong T N, Chai J C K, Ong W L, Zhou J, Tan S H, Yobas L. Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91(8): 084102
|
130 |
Zhou Z, Kong T, Mkaouar H, Salama K N, Zhang J M. A hybrid modular microfluidic device for emulsion generation. Sensors and Actuators. A, Physical, 2018, 280: 422–428
|
131 |
Kanai T, Tsuchiya M. Microfluidic devices fabricated using stereolithography for preparation of monodisperse double emulsions. Chemical Engineering Journal, 2016, 290: 400–404
|
/
〈 | 〉 |