Frontiers of Chemical Science and Engineering >
Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess
Received date: 08 Nov 2018
Accepted date: 20 May 2019
Published date: 15 Feb 2020
Copyright
Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.
Key words: porphyrin dimer; chirality; enantiomeric excess; CD; fluorescence
Daniel T. Payne , Mandeep K. Chahal , Václav Březina , Whitney A. Webre , Katsuhiko Ariga , Francis D’Souza , Jan Labuta , Jonathan P. Hill . Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(1) : 28 -40 . DOI: 10.1007/s11705-019-1869-1
1 |
Nunez M D C, Gallo M A, Espinosa A, Campos J M. Rapid development of chiral drugs in the pharmaceutical industry. In: New Developments in Medicinal Chemistry. United Arab Emirates: Bentham Science Publishers, 2010, 95–113
|
2 |
Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 1995, 1–271
|
3 |
Halpern J, Trost B. Asymmetric catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5347
|
4 |
Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 2008, 37(12): 2593–2608
|
5 |
Parker D. NMR determination of enantiomeric purity. Chemical Reviews, 1991, 91(7): 1441–1457
|
6 |
Shcherbakova E G, Brega V, Lynch V M, James T D, Anzenbacher P Jr. High-throughput assay for enantiomeric excess determination in 1,2- and 1,3-diols and direct asymmetric reaction screening. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(42): 10222–10229
|
7 |
Jo H H, Lin C Y, Anslyn E V. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 2014, 47(7): 2212–2221
|
8 |
Yang L, Wenzel T, Williamson R T, Christensen M, Schafer W, Welch C J. Expedited selection of NMR chiral solvating agents for determination of enantiopurity. ACS Central Science, 2016, 2(5): 332–340
|
9 |
Pirkle W H, Sikkenka D L. The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones: Consequences of three-point interactions. Journal of Organic Chemistry, 1977, 42(8): 1370–1374
|
10 |
Labuta J, Ishihara S, Šikorský T, Futera Z, Shundo A, Hanyková L, Burda J V, Ariga K, Hill J P. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4(1): 2188
|
11 |
Labuta J, Hill J P, Ishihara S, Hanyková L, Ariga K. Chiral sensing by nonchiral tetrapyrroles. Accounts of Chemical Research, 2015, 48(3): 521–529
|
12 |
Kadish K M, Smith K M, Guilard R, eds. The Porphyrin Handbook. San Diego: Academic Press, 2003, 1–20
|
13 |
Sreenilayam G, Moore E J, Steck V, Fasan R. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catalysis, 2017, 7(11): 7629–7633
|
14 |
Nandipati V, Akinapelli K, Koya L, Starnes S D. Recognition of mandelate stereoisomers by chiral porphyrin hosts: Prediction of stereopreference in guest binding a priori using a simple binding model. Tetrahedron Letters, 2014, 55(5): 985–991
|
15 |
Ema Y, Nemugaki S, Tsuboi S, Utaka M. Synthesis and CD spectrum of chiral porphyrin dimer. Tetrahedron Letters, 1995, 36(33): 5905–5908
|
16 |
Hayashi T, Nonoguchi M, Aya T, Ogoshi H. Molecular recognition of α,ω-diamines by metalloporphyrin dimer. Tetrahedron Letters, 1997, 38(9): 1603–1606
|
17 |
Kurtán T, Nesnas N, Li Y Q, Huang X, Nakanishi K, Berova N. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. Journal of the American Chemical Society, 2001, 123(25): 5962–5973
|
18 |
Borovkov V V, Fujii I, Muranaka A, Hembury G A, Tanaka T, Ceulemans A, Kobayashi N, Inoue Y. Rationalization of supramolecular chirality in a bisporphyrin system. Angewandte Chemie International Edition, 2004, 43(41): 5481–5485
|
19 |
Saha B, Ikbal S A, Petrovic A G, Berova N, Rath S P. Complexation of chiral zinc-porphyrin tweezer with achiral diamines: Induction and two-step inversion of interporphyrin helicity monitored by ECD. Inorganic Chemistry, 2017, 56(7): 3849–3860
|
20 |
Liu G, Yasumitsu T, Zhao L, Peng X, Wang F, Bauri A K, Aonuma S, Kimura T, Komatsu N. Preferential extraction of left- and right-handed single-walled carbon nanotubes by use of chiral diporphyrin nanotweezers. Organic & Biomolecular Chemistry, 2012, 10(30): 5830–5836
|
21 |
Labuta J, Ishihara S, Shundo A, Arai S, Takeoka S, Ariga K, Hill J P. Chirality sensing by non-chiral porphines. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(13): 3558–3561
|
22 |
Ishihara S, Labuta J, Futera Z, Mori S, Sato H, Ariga K, Hill J P. NMR spectroscopic determination of enantiomeric excess using small prochiral molecules: Intermolecular transfer of magnetic anisotropy in isotropic media. Journal of Physical Chemistry B, 2018, 122(19): 5114–5120
|
23 |
Shinoda T, Onaka M, Izumi Y. The reason why K10 is an effective promoter for meso-tetraalkylporphyrin synthesis. Chemistry Letters, 1995, 24(7): 493–494
|
24 |
Plamont R, Kikkawa Y, Takahashi M, Kanesato M, Giorgi M, Shun A C K, Roussel C, Balaban T S. Nanoscopic imaging of meso-tetraalkylporphyrins prepared in high yields enabled by Montmorillonite K10 and 3 Å molecular sieves. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(34): 11293–11300
|
25 |
Rostami M, Rafiee L, Hassanzadeh F, Dadrass A R, Khodarahmi G A. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. Research in Pharmaceutical Sciences, 2015, 10(6): 504–513
|
26 |
Connors K A. Binding Constants: The Measurement of Molecular Complex Stability. New York: Wiley-Interscience, 1987, 1–432
|
27 |
Hirose K. A practical guide for the determination of binding constants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39(3-4): 193–209
|
28 |
Henry E R, Hofrichter J. Methods in Enzymology. London: Academic Press, 1992, 210: 29–192
|
29 |
Malinowski E R. Factor Analysis in Chemistry. New York: Wiley-Interscience, 2002, 1–432
|
30 |
Březina V, Ishihara S, Lang J, Hanyková L, Ariga K, Hill J P, Labuta J. Structural modulation of chromic response: Effects of binding-site blocking in a conjugated calix[4]pyrrole chromophore. ChemistryOpen, 2018, 7(5): 323–335
|
31 |
Hanuš J, Chmelová K, Štěpánek J, Turpin P Y, Bok J, Rosenberg I, Točík Z. Raman spectroscopic study of triplex-like complexes of polyuridylic acid with the isopolar, non–isosteric phosphonate analogues of diadenosine monophosphate. Journal of Raman Spectroscopy, 1999, 30(8): 667–676
|
32 |
Zimányi L. Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: A critical evaluation using realistic simulated data. Journal of Physical Chemistry B, 2004, 108(13): 4199–4209
|
33 |
Zimányi L, Kulcsár Á, Lanyi J K, Sears D F, Saltiel J. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: Analysis of simulated data. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4408–4413
|
34 |
Brahma S, Ikbal S A, Dhamija A, Rath S P. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system. Inorganic Chemistry, 2014, 53(5): 2381–2395
|
35 |
Brahma S, Ikbal S A, Rath S P. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: Induction and rationalization of supramolecular chirality. Inorganic Chemistry, 2014, 53(1): 49–62
|
36 |
Zhang P, Wolf C. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes. Chemical Communications, 2013, 49(62): 7010–7012
|
37 |
Jung S H, Kim K Y, Ahn A, Lee S S, Choi M Y, Jaworski J, Jung J W. NMR detection of chirality and enantiopurity of amines by using benzene tricarboxamide-based hydrogelators as chiral solvating agents. New Journal of Chemistry, 2016, 40(9): 7917–7922
|
38 |
Wang C, Wu X, Pu L. A highly fluorescent chiral aldehyde for enantioselective fluorescent recognition in a biphasic system. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10749–10752
|
39 |
Zardi P, Wurst K, Licini G, Zonta C. Concentration-independent stereodynamic g-Probe for chiroptical enantiomeric excess determination. Journal of the American Chemical Society, 2017, 139(44): 15616–15619
|
40 |
Ema T, Ouchi N, Doi T, Korenaga T, Sakai T. Highly sensitive chiral shift reagent bearing two zinc porphyrins. Organic Letters, 2005, 7(18): 3985–3988
|
41 |
Ema T, Misawa S, Nemugaki S, Sakai T, Utaka M. New optically active diporphyrin having a chiral cyclophane as a spacer. Chemistry Letters, 1997, 26(6): 487–488
|
42 |
Borovkov V V, Lintuluoto J M, Hembury G A, Sugiura M, Arakawa R, Inoue Y. Supramolecular chirogenesis in zinc porphyrins: Interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Journal of Organic Chemistry, 2003, 68(19): 7176–7192
|
43 |
Chen Q, Hirsch R E. A direct and simultaneous detection of zinc protoporphyrin IX, free protoporphyrin IX, and fluorescent heme degradation product in red blood cell hemosylates. Free Radical Research, 2006, 40(3): 285–294
|
44 |
Fossey J S, Anslyn E V, Brittain W D G, Bull S D, Chapin B M, Le Duff C L, James T D, Lees G, Lim S, Lloyd J A C, et al. Rapid determination of enantiomeric excess via NMR spectroscopy: A research-informed experiment. Journal of Chemical Education, 2017, 94(1): 79–84
|
45 |
Berova N, Pescitelli G, Petrovic A G, Proni G. Probing molecular chirality by CD-sensitive dimeric metalloporphyrin hosts. Chemical Communications, 2009, 40(40): 5958–5980
|
46 |
Tanasova M, Anyika M, Borhan B. Sensing remote chirality: Stereochemical determination of β, γ, and δ-chiral carboxylic acids. Angewandte Chemie International Edition, 2015, 54(14): 4274–4278
|
47 |
Lu W, Yang H, Li X, Wang C, Zhan X, Qi D, Bian Y, Jiang J. Chiral discrimination of diamines by a binaphthylene-bridged porphyrin dimer. Inorganic Chemistry, 2017, 56(14): 8223–8231
|
48 |
Payne D T, Fossey J S, Elmes R B P. Catalysis and sensing for our environment (CASE2015) and the supramolecular chemistry Ireland meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th–11th July. Supramolecular Chemistry, 2016, 28(11-12): 921–931
|
/
〈 | 〉 |