RESEARCH ARTICLE

Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite

  • Hanlu Wang ,
  • Idris Jibrin ,
  • Xingye Zeng
Expand
  • College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

Received date: 07 Jan 2019

Accepted date: 15 Mar 2019

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Catalysts for the desulfurization of gasoline samples were synthesized via the immobilization of well-dispersed phosphotungstic acid (HPW) on Mobil composition of matter-twenty-two (MWW) zeolite. Characterization results indicated that these catalysts possess a mesoporous structure with the retention of the Keggin structure of immobilized HPW. Relevant reaction parameters influencing sulfur removal were systematically investigated, including HPW loading, catalyst dosage, temperature, initial S-concentration, molar ratio of oxidant to sulfide (O/S), volume ratio of MeCN to model oil (Ext./oil), and sulfide species. The 40 wt-% HPW/MWW catalyst exhibited the highest catalytic activity with 99.6% dibenzothiophene sulfur removal from prepared samples. The 40 wt-% HPW/MWW catalyst was recycled four times and could be easily regenerated. Finally, as an exploratory study, straight-run-gasoline and fluid catalytic cracking gasoline were employed to accurately evaluate the desulfurization performance of 40 wt-% HPW/MWW. Our research provides new insights into the development and application of catalysts for desulfurization of gasoline.

Cite this article

Hanlu Wang , Idris Jibrin , Xingye Zeng . Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(4) : 546 -560 . DOI: 10.1007/s11705-019-1842-z

Acknowledgements

This work was supported by Petroleum Technology Development Fund (PTDF), Nigeria, and the Training Program for Outstanding Young Teachers in Universities in Guangdong Province (Grant No. YQ2015116), and Petrochemical Industry Transformation and Upgrading Technology Innovation Public Service Platform in Maoming City (No. 2016B020211002), the National Natural Science Foundation of China (Grant No. 21403038), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313892).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1842-z and is accessible for authorized users.
1
Al Degs Y S, El Sheikh A H, Al Bakain R Z, Newman A P, Al Ghouti M A. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: A review. Energy Technology (Weinheim), 2016, 4(6): 679–699

DOI

2
Wei Q, Chen J, Song C, Li G. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst. Frontiers of Chemical Science and Engineering, 2015, 9(3): 336–348

DOI

3
Kong A, Wei Y, Li Y. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation. Frontiers of Chemical Science and Engineering, 2013, 7(2): 170–176

DOI

4
Wang L, Yang R T. New nanostructured sorbents for desulfurization of natural gas. Frontiers of Chemical Science and Engineering, 2014, 8(1): 8–19

DOI

5
Tang X D, Zhang Y F, Li J J, Zhu Y Q, Qing D Y, Deng Y X. Deep extractive desulfurization with arenium ion deep eutectic solvents. Industrial & Engineering Chemistry Research, 2015, 54(16): 4625–4632

DOI

6
Chen Y, Song H, Meng H, Lu Y, Li C, Lei Z, Chen B. Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Processing Technology, 2017, 158: 20–25

DOI

7
Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I. Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Industrial & Engineering Chemistry Research, 2008, 47(19): 7476–7482

DOI

8
Kilbane J J, Stark B. Biodesulfurization: A model system for microbial physiology research. World Journal of Microbiology & Biotechnology, 2016, 32(8): 137

DOI

9
He J, Wu P, Wu Y, Li H, Jiang W, Xun S, Zhang M, Zhu W, Li H. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8930–8938

DOI

10
Yue D, Lei J, Peng Y, Li J, Du X. Hierarchical ordered meso/macroporous H3PW12O40/SiO2 catalysts with superior oxidative desulfurization activity. Journal of Porous Materials, 2018, 25(3): 727–734

DOI

11
Leng K, Li X, Ye G, Du Y, Sun Y, Xu W. Ti-containing hierarchical Beta with highly active sites for deep desulfurization of fuels under mild conditions. Catalysis Science & Technology, 2016, 6(20): 7615–7622

DOI

12
Silva G, Voth S, Szymanski P, Prokopchuk E M. Oxidation of dibenzothiophene by hydrogen peroxide in the presence of bis(acetylacetonato)oxovanadium(IV). Fuel Processing Technology, 2011, 92(8): 1656–1661

DOI

13
Haw K G, Bakar W A W A, Ali R, Chong J F, Kadir A A A. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system. Fuel Processing Technology, 2010, 91(9): 1105–1112

DOI

14
Sengupta A, Kamble P D, Basu J K, Sengupta S. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Industrial & Engineering Chemistry Research, 2012, 51(1): 147–157

DOI

15
Li S W, Yang Z, Gao R M, Zhang G, Zhao J S. Direct synthesis of mesoporous SRL-POM@MOF-199@MCM-41 and its highly catalytic performance for the oxidesulfurization of DBT. Applied Catalysis B: Environmental, 2018, 221: 574–583

DOI

16
Komintarachat C, Trakarnpruk W. Oxidative desulfurization using polyoxometalates. Industrial & Engineering Chemistry Research, 2006, 45(6): 1853–1856

DOI

17
Sachdeva T O, Pant K K. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Processing Technology, 2010, 91(9): 1133–1138

DOI

18
Jin D, Hou Z, Luo Y, Zheng X. Synthesis of dimethyldiphenylmethane over supported 12-tungstophosphoric acid (H3PW12O40). Journal of Molecular Catalysis A: Chemical, 2006, 243(2): 233–238

DOI

19
Sakthivel A, Komura K, Sugi Y. MCM-48 supported tungstophosphoric acid: An efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2008, 47(8): 2538–2544

DOI

20
Liu L, Zhang Y, Tan W. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon. Ultrasonics Sonochemistry, 2014, 21(3): 970–974

DOI

21
Chen T, Fan C. One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. Journal of Porous Materials, 2013, 20(5): 1225–1230

DOI

22
Liu L, Zhang Y, Tan W. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst. Frontiers of Chemical Science and Engineering, 2013, 7(4): 422–427

DOI

23
You X, Yu L L, Xiao F F, Wu S C, Yang C, Cheng J H. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation. Chemical Engineering Journal, 2018, 335: 812–821

DOI

24
Lei J, Chen L, Yang P, Du X, Yan X. Oxidative desulfurization of diesel fuel by mesoporous phosphotungstic acid/SiO2: The effect of preparation methods on catalytic performance. Journal of Porous Materials, 2013, 20(5): 1379–1385

DOI

25
Qiu J, Wang G, Zhang Y, Zeng D, Chen Y. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel, 2015, 147: 195–202

DOI

26
Ha Y, Li Y. Tungstophosphoric acid supported on nano SiO2 catalyst for the alkylation of 2-ethylthiophene with vinyltoluene in the crack C9 fraction. Journal of Porous Materials, 2015, 22(3): 721–728

DOI

27
Bertolini G R, Pizzio L R, Kubacka A, Muñoz-Batista M J, Fernández-García M. Composite H3PW12O40-TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225: 100–109

DOI

28
Marcì G, García-López E, Palmisano L, Carriazo D, Martín C, Rives V. Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2009, 90(3-4): 497–506

DOI

29
Yang P, Zhou S, Du Y, Li J, Lei J. Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels. Journal of Porous Materials, 2017, 24(2): 531–539

DOI

30
Yan X M, Mei Z, Mei P, Yang Q. Self-assembled HPW/silica–alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. Journal of Porous Materials, 2014, 21(5): 729–737

DOI

31
Tang L, Luo G, Zhu M, Kang L, Dai B. Preparation, characterization and catalytic performance of HPW-TUD-1 catalyst on oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 620–626

DOI

32
Xiong J, Zhu W, Ding W, Yang L, Chao Y, Li H, Zhu F, Li H. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: Efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895–19904

DOI

33
Zhao Z K, Dai Y T. A comparison of the H3PW12O40/MCM-41 and HY zeolite for alkenylation of p-xylene with phenylacetylene. Advanced Materials Research, 2013, 634-638: 377–381

DOI

34
Liu Q Y, Wu W L, Wang J, Ren X Q, Wang Y R. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol. Microporous and Mesoporous Materials, 2004, 76(1-3): 51–60

DOI

35
Luo G, Kang L, Zhu M, Dai B. Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene. Fuel Processing Technology, 2014, 118: 20–27

DOI

36
Wu P. A novel titanosilicate with MWW structure III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. Journal of Catalysis, 2003, 214(2): 317–326

DOI

37
Wu P, Tatsumi T, Komatsu T, Yashima T. A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. Journal of Physical Chemistry B, 2001, 105(15): 2897–2905

DOI

38
Wu P, Tatsumi T, Komatsu T, Yashima T. Hydrothermal synthesis of a novel titanosilicate with MWW topology. Chemistry Letters, 2000, 29(7): 774–775

DOI

39
Wang Y, Zhou D, Yang G, Miao S, Liu X, Bao X. A DFT study on isomorphously substituted MCM-22 zeolite. Journal of Physical Chemistry A, 2004, 108(32): 6730–6734

DOI

40
Wang J, Zhang F, Hua W, Yue Y, Gao Z. Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catalysis Communications, 2012, 18: 63–67

DOI

41
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799

DOI

42
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc., 2013

43
Luo H Y, Michaelis V K, Hodges S, Griffin R G, Román-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science (Cambridge), 2015, 6(11): 6320–6324

DOI

44
Zhang B, Asakura H, Yan N. Atomically dispersed Rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Industrial & Engineering Chemistry Research, 2017, 56(13): 3578–3587

DOI

45
Nie G, Zou J J, Feng R, Zhang X, Wang L. HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine. Catalysis Today, 2014, 234: 271–277

DOI

46
Wang H, Wang C, Yang Y, Zhao M, Wang Y H. H3PW12O40/mpg-C3N4 as efficient and reusable bifunctional catalyst in one-pot oxidation-Knoevenagel condensation tandem reaction. Catalysis Science & Technology, 2017, 7(2): 405–417

DOI

47
Sheng X, Kong J, Zhou Y, Zhang Y, Zhang Z, Zhou S. Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. Microporous and Mesoporous Materials, 2014, 187: 7–13

DOI

48
Hoo P Y, Abdullah A Z. Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chemical Engineering Journal, 2014, 250: 274–287

DOI

49
Kalantari K, Kalbasi M, Sohrabi M, Royaee S J. Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceramics International, 2017, 43(1): 973–981

DOI

50
Kim H J, Shul Y G, Han H. Synthesis of heteropolyacid (H3PW12O40)/SiO2 nanoparticles and their catalytic properties. Applied Catalysis A, General, 2006, 299(1-2): 46–51

DOI

51
Zhu Y, Zhu M, Kang L, Yu F, Dai B. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel. Industrial & Engineering Chemistry Research, 2015, 54(7): 2040–2047

DOI

52
Kadijani J A, Narimani E. Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content. Applied Petrochemical Research, 2016, 6(1): 25–34

DOI

53
Lü H, Gao J, Jiang Z, Jing F, Yang Y, Wang G, Li C. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. Journal of Catalysis, 2006, 239(2): 369–375

DOI

54
Zeng X, Xiao X, Li Y, Chen J, Wang H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Applied Catalysis B: Environmental, 2017, 209: 98–109

DOI

55
Qin L, Zheng Y, Li D, Zhou Y, Zhang L, Zuhra Z. Phosphotungstic acid immobilized on amino functionalized spherical millimeter-sized mesoporous gamma-Al2O3 bead and its superior performance in oxidative desulfurization of dibenzothiophene. Fuel, 2016, 181: 827–835

DOI

56
Yang H, Jiang B, Sun Y, Zhang L, Huang Z, Sun Z, Yang N. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid. Journal of Hazardous Materials, 2017, 333: 63–72

DOI

57
Dizaji A K, Mokhtarani B, Mortaheb H R. Deep and fast oxidative desulfurization of fuels using graphene oxide-based phosphotungstic acid catalysts. Fuel, 2019, 236: 717–729

DOI

58
Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, Wang Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220: 328–336

DOI

59
Zhang X, Zhu Y, Huang P, Zhu M. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization. RSC Advances, 2016, 6(73): 69357–69364

DOI

60
Yan X M, Mei P, Lei J, Mi Y, Xiong L, Guo L. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 304(1-2): 52–57

DOI

61
Ribeiro S, Barbosa A D S, Gomes A C, Pillinger M, Gonçalves I S, Cunha-Silva L, Balula S S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Processing Technology, 2013, 116: 350–357

DOI

62
Li B, Liu Z, Liu J, Zhou Z, Gao X, Pang X, Sheng H. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid. Journal of Colloid and Interface Science, 2011, 362(2): 450–456

DOI

63
Ji H, Sun J, Wu P, Dai B, Chao Y, Zhang M, Jiang W, Zhu W, Li H. Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A Chemical, 2016, 423: 207–215

DOI

64
Wang R, Yu F, Zhang G, Zhao H. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catalysis Today, 2010, 150(1-2): 37–41

DOI

65
Bazyari A, Khodadadi A A, Haghighat Mamaghani A, Beheshtian J, Thompson L T, Mortazavi Y. Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Applied Catalysis B: Environmental, 2016, 180: 65–77

DOI

66
Yang S T, Jeong K E, Jeong S Y, Ahn W S. Synthesis of mesoporous TS-1 using a hybrid SiO2-TiO2 xerogel for catalytic oxidative desulfurization. Materials Research Bulletin, 2012, 47(12): 4398–4402

DOI

67
Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, Yang H. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Processing Technology, 2018, 177: 81–88

DOI

68
Du S, Li F, Sun Q, Wang N, Jia M, Yu J. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications, 2016, 52(16): 3368–3371

DOI

69
Xun S, Zhu W, Chang Y, Li H, Zhang M, Jiang W, Zheng D, Qin Y, Li H. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288: 608–617

DOI

70
Wang C, Zhu W, Chen Z, Yin S, Wu P, Xun S, Jiang W, Zhang M, Li H. Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5(121): 99927–99934

DOI

71
Li H, Zhu W, Wang Y, Zhang J, Lu J, Yan Y. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chemistry, 2009, 11(6): 810–815

DOI

72
Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232–1239

DOI

73
Zeng X, Mo G, Wang H, Zhou R, Zhao C. Oxidation mechanism of dibenzothiophene compounds: A computational study. Computational & Theoretical Chemistry, 2014, 1037: 22–27

DOI

74
Li H, Zhu W, Zhu S, Xia J, Chang Y, Jiang W, Zhang M, Zhou Y, Li H. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(6): 2087–2100

DOI

75
Kalantari K, Kalbasi M, Sohrabi M, Royaee S J. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, 2016, 42(13): 14834–14842

DOI

76
Yue D, Lei J, Lina Z, Zhenran G, Du X, Li J. Oxidation desulfurization of fuels by using amphiphilic hierarchically meso/macroporous phosphotungstic acid/SiO2 catalysts. Catalysis Letters, 2018, 148(4): 1100–1109

DOI

77
Liu S, Zhao F, Sun H, Liu X, Cui B. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization. Applied Organometallic Chemistry, 2018, 32(2): e4082

DOI

78
Wang L, Li S, Cai H, Xu Y, Wu X, Chen Y. Ultra-deep desulfurization of fuel with metal complex of Chitosan Schiff base assisted by ultraviolet. Fuel, 2012, 94: 165–169

DOI

79
Jiang B, Yang H, Zhang L, Zhang R, Sun Y, Huang Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal, 2016, 283: 89–96

DOI

Outlines

/