REVIEW ARTICLE

Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties

  • Zhaoqi Ye 1 ,
  • Hongbin Zhang , 2 ,
  • Yahong Zhang 1 ,
  • Yi Tang , 1
Expand
  • 1. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
  • 2. Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China

Received date: 28 Feb 2019

Accepted date: 15 Apr 2019

Published date: 15 Apr 2020

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

As an important zeolite material, MFI zeolites, as well as their controllable synthesis, are of great interest in both basic and applied science. Among the developed synthetic approaches, the seed-induced method has gradually evolved into a facile, low-cost, and even green alternative to give zeolites the desirable physicochemical properties. In this review, we briefly summarize the development of seed-induced syntheses of diverse functional MFI zeolites, where the “living” seed crystals not only direct the formation of zeolitic framework but also function as special “templates” or “units” to fine-tune the zeolite materials with diverse sizes, shapes, compositions, morphologies and pore structures. Moreover, on the basis of their structural features and crystallization behaviors in seed-induced synthesis, we reveal the roles of seeds and discuss the related crystallization mechanisms including both classical and non-classical pathways. We also want to guide readers to investigate the structure-performance relationships between these functional MFI zeolite catalysts and suitable catalytic reactions.

Cite this article

Zhaoqi Ye , Hongbin Zhang , Yahong Zhang , Yi Tang . Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 143 -158 . DOI: 10.1007/s11705-019-1852-x

Acknowledgements

This work was supported by the National Major Research and Development Plan (Grant No. 2018YFA0209402), the National Natural Science Foundation of China (Grant Nos. 21433022, 21573046, 21473037, U1463206 and 21802023), and Shanghai Sailing Program (No. 18YF1401900).
1
Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144

DOI

2
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821

DOI

3
Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903

DOI

4
Hartmann M, Machoke A G, Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews, 2016, 45(12): 3313–3330

DOI

5
Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149

DOI

6
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702

DOI

7
Serrano D P, Escola J M, Pizarro P. Synthesis strategies in the search for hierarchical zeolites. Chemical Society Reviews, 2013, 42(9): 4004–4035

DOI

8
Meng X J, Xiao F S. Green routes for synthesis of zeolites. Chemical Reviews, 2014, 114(2): 1521–1543

DOI

9
Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376

DOI

10
Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials. Advanced Materials, 2018, 30(16): 1704439

DOI

11
Majano G, Darwiche A, Mintova S, Valtchev V. Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084–7091

DOI

12
Ren N, Yang Z J, Lv X C, Shi J, Zhang Y H, Tang Y. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114

DOI

13
Iyoki K, Kamimura Y, Itabashi K, Shimojima A, Okubo T. Synthesis of MTW-type zeolites in the absence of organic structure-directing agent. Chemistry Letters, 2010, 39(7): 730–731

DOI

14
Kamimura Y, Itabashi K, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “green MTW” from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 2012, 147(1): 149–156

DOI

15
Yu Q J, Chen J, Zhang Q, Li C Y, Cui Q K. Micron ZSM-11 microspheres seed-assisted synthesis of hierarchical submicron ZSM-11 with intergrowth morphology. Materials Letters, 2014, 120: 97–100

DOI

16
Snyder M A, Tsapatsis M. Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes. Angewandte Chemie International Edition, 2007, 46(40): 7560–7573

DOI

17
Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22(34): 17381–17403

DOI

18
Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Yue J H, Gao Z. Zeolitic tissue through wood cell templating. Advanced Materials, 2002, 14(12): 926–929

DOI

19
Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Hollow zeolite capsules: A novel approach for fabrication and guest encapsulation. Chemistry of Materials, 2002, 14(8): 3217–3219

DOI

20
Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464

DOI

21
Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218

DOI

22
Zhang H B, Zhao Y, Zhang H X, Wang P C, Shi Z P, Mao J J, Zhang Y H, Tang Y. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(21): 7141–7151

DOI

23
Zhang H B, Zhang H X, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chemistry of Materials, 2017, 29(21): 9247–9255

DOI

24
De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, Penn R L, Whitelam S, Joester D, Zhang H Z, Rimer J D, Navrotsky A, Banfield J F, Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349(6247): aaa6760

DOI

25
Olafson K N, Li R, Alamani B G, Rimer J D. Engineering crystal modifiers: Bridging classical and nonclassical crystallization. Chemistry of Materials, 2016, 28(23): 8453–8465

DOI

26
Kumar M, Luo H, Roman-Leshkov Y, Rimer J D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. Journal of the American Chemical Society, 2015, 137(40): 13007–13017

DOI

27
Zhao Y, Zhang H B, Wang P C, Xue F Q, Ye Z, Zhang Y H, Tang Y. Tailoring the morphology of MTW zeolite mesocrystals: Intertwined classical/nonclassical crystallization. Chemistry of Materials, 2017, 29(8): 3387–3396

DOI

28
Zhang H B, Hu Z J, Huang L, Zhang H X, Song K S, Wang L, Shi Z P, Ma J X, Zhuang Y, Shen W, Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity. ACS Catalysis, 2015, 5(4): 2548–2558

DOI

29
Zhang H B, Song K S, Wang L, Zhang H X, Zhang Y H, Tang Y. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem, 2013, 5(10): 2874–2878

DOI

30
Zhang H B, Ma Y C, Song K S, Zhang Y H, Tang Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 2013, 302: 115–125

DOI

31
Hu Z J, Zhang H B, Wang L, Zhang H X, Zhang Y H, Xu H L, Shen W, Tang Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catalysis Science & Technology, 2014, 4(9): 2891–2895

DOI

32
Betke U, Lieb A. Micro-macroporous composite materials—preparation techniques and selected applications: A review. Advanced Engineering Materials, 2018, 20(9): 1800252

DOI

33
Buciuman F C, Kraushaar-Czarnetzki B. Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 2001, 69(1–4): 337–342

DOI

34
Silva E R, Silva J M, Vaz M F, Oliveira F A C, Ribeiro F. Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63(5): 572–574

DOI

35
Zhang B, Davis S A, Mann S, Mendelson N H. Bacterial templating of zeolite fibres with hierarchical structure. Chemical Communications, 2000, 9: 781–782

DOI

36
Huang L M, Wang Z B, Sun J Y, Miao L, Li Q Z, Yan Y S, Zhao D Y. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531

DOI

37
Jung K T, Hyun J H, Shul Y G, Kim D S. Synthesis of fibrous titanium silicalite (FTS-1) zeolite. Zeolites, 1997, 19(2–3): 161–168

DOI

38
Jung K T, Hyun J H, Shul Y G, Koo K K. Nanoparticle synthesis of titanium silicalite for fiber, film, and monolith formation. AIChE Journal. American Institute of Chemical Engineers, 1997, 43(S11): 2802–2808

DOI

39
Wang H T, Huang L M, Wang Z B, Mitra A, Yan Y S. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chemical Communications, 2001, 15: 1364–1365

DOI

40
Wang Z B, Wang H T, Mitra A, Huang L M, Yan Y S. Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001, 13(10): 746–749

DOI

41
Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237

DOI

42
Wang X D, Tang Y, Wang Y J, Gao Z, Yang W L, Fu S K. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162

DOI

43
Wang Y J, Tang Y, Wang X D, Yang W L, Gao Z. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method. Chemistry Letters, 2000, 29(11): 1344–1345

DOI

44
Rhodes K H, Davis S A, Caruso F, Zhang B J, Mann S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000, 12(10): 2832–2834

DOI

45
Dong A G, Wang Y J, Wang D J, Yang W L, Zhang Y H, Ren N, Gao Z, Tang Y. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors. Microporous and Mesoporous Materials, 2003, 64(1–3): 69–81

DOI

46
Dong A A, Wang Y J, Tang Y, Zhang Y H, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510

DOI

47
Valtchev V. Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chemistry of Materials, 2002, 14(10): 4371–4377

DOI

48
Lai Z P, Tsapatsis M, Nicolich J R. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers. Advanced Functional Materials, 2004, 14(7): 716–729

DOI

49
Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154

DOI

50
Kerr G T. Chemistry of crystalline aluminosilicates. I. factors affecting formation of zeolite A. Journal of Physical Chemistry, 1966, 70(4): 1047–1050

DOI

51
Kacirek H, Lechert H. Investigations on growth of the zeolite type NaY. Journal of Physical Chemistry, 1975, 79(15): 1589–1593

DOI

52
Kerr G T. Chemistry of crystalline aluminosilicates. IV. factors affecting formation of zeolites X and B. Journal of Physical Chemistry, 1968, 72(4): 1385–1386

DOI

53
Dutta P K, Bronic J. Mechanism of zeolite formation—seed gel interaction. Zeolites, 1994, 14(4): 250–255

DOI

54
Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Organotemplate-free and fast route for synthesizing Beta zeolite. Chemistry of Materials, 2008, 20(14): 4533–4535

DOI

55
Ren N, Bronic J, Subotic B, Lv X C, Yang Z J, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous and Mesoporous Materials, 2011, 139(1–3): 197–206

DOI

56
Ren N, Bronic J, Subotic B, Song Y M, Lv X C, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous and Mesoporous Materials, 2012, 147(1): 229–241

DOI

57
Yu Q J, Zhang Q, Liu J W, Li C Y, Cui Q K. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5. CrystEngComm, 2013, 15(38): 7680–7687

DOI

58
Nada M H, Larsen S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 2017, 239: 444–452

DOI

59
Pan F, Lu X C, Wang T Z, Yan Y. Submicron ZSM-5 synthesized by green and fast route. Materials Letters, 2017, 196: 245–247

DOI

60
Serrano D P, Aguado J, Morales G, Rodriguez J M, Peral A, Thommes M, Epping J D, Chmelka B F. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654

DOI

61
Serrano D P, Pinnavaia T J, Aguado J, Escola J M, Peral A, Villalba L. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 2014, 227: 15–25

DOI

62
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606

DOI

63
Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618–14627

DOI

64
Liu M, Li J H, Jia W Z, Qin M J, Wang Y N, Tong K, Chen H H, Zhu Z R. Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide. RSC Advances, 2015, 5(12): 9237–9240

DOI

65
Chen H B, Wang Y Q, Sun C, Wang X, Wang C. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene. Catalysis Communications, 2018, 112: 10–14

DOI

66
Zhu Y, Hua Z L, Song Y D, Wu W, Zhou X X, Zhou J, Shi J L. Highly chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites. Journal of Catalysis, 2013, 299: 20–29

DOI

67
Yu Q J, Meng X J, Liu J W, Li C Y, Cui Q K. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous and Mesoporous Materials, 2013, 181: 192–200

DOI

68
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 2005, 82(1–2): 1–78

DOI

69
Warzywoda J, Edelman R D, Thompson R W. Thoughts on the induction time in zeolite crystallization. Zeolites, 1989, 9(3): 187–192

DOI

70
Zhang H X, Zhang H B, Wang P C, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6(53): 47623–47631

DOI

71
Kirschhock C E A, Ravishankar R, Jacobs P A, Martens J A. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. Journal of Physical Chemistry B, 1999, 103(50): 11021–11027

DOI

72
Davis T M, Drews T O, Ramanan H, He C, Dong J S, Schnablegger H, Katsoulakis M A, Kokkoli E, McCormick A V, Penn R L, Tsapatsis M. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials, 2006, 5(5): 400–408

DOI

73
Song R Q, Colfen H. Mesocrystals-ordered nanoparticle superstructures. Advanced Materials, 2010, 22(12): 1301–1330

DOI

74
Fang Y M, Hu H Q, Chen G H. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chemistry of Materials, 2008, 20(5): 1670–1672

DOI

75
de Moor P P E A, Beelen T P M, Komanschek B U, Beck L W, Wagner P, Davis M E, van Santen R A. Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(7): 2083–2088

DOI

76
Zheng J W, Zhang W P, Liu Z T, Huo Q S, Zhu K K, Zhou X G, Yuan W K. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties. Microporous and Mesoporous Materials, 2016, 225: 74–87

DOI

77
Zhao Y, Ye Z Q, Wang L, Zhang H B, Xue F Q, Xie S H, Cao X M, Zhang Y H, Tang Y. Engineering fractal MTW zeolite mesocrystal: Particle-based dendritic growth via twinning-plane induced crystallization. Crystal Growth & Design, 2018, 18(2): 1101–1108

DOI

78
Wang P C, Zhao Y, Zhang H B, Yu T, Zhang Y H, Tang Y. Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Advances, 2017, 7(38): 23272–23278

DOI

79
Wang L, Zhu S C, Shen M K, Tian H W, Xie S H, Zhang H B, Zhang Y H, Tang Y. Fractal MTW zeolite crystals: Hidden dimensions in nanoporous materials. Angewandte Chemie International Edition, 2017, 56(39): 11764–11768

DOI

80
Kumar M, Li R, Rimer J D. Assembly and evolution of amorphous precursors in zeolite L crystallization. Chemistry of Materials, 2016, 28(6): 1714–1727

DOI

81
Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617

DOI

82
Wang L, Yan N N, Liu X N, Zhao X B, Shen M K, Liu L F, Tian P, Guo P, Liu Z M. Unraveling the twin and tunability of the crystal domain sizes in the medium-pore zeolite ZSM-57 by electron crystallography. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(4): 1029–1036

83
Socci J, Osatiashtiani A, Kyriakou G, Bridgwater T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A, General, 2019, 570: 218–227

DOI

84
Zhang H Y, Wang L, Zhang D L, Meng X J, Xiao F S. Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233: 133–139

DOI

85
Hoff T C, Gardner D W, Thilakaratne R, Proano-Aviles J, Brown R C, Tessonnier J P. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Applied Catalysis A, General, 2017, 529: 68–78

DOI

86
Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. Journal of the American Chemical Society, 2012, 134(28): 11542–11549

DOI

87
Ji Y Y, Wang Y Q, Xie B, Xiao F S. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites. Comments on Inorganic Chemistry, 2016, 36(1): 1–16

DOI

88
Shao J, Fu T J, Ma Q, Ma Z, Zhang C M, Li Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 2019, 273: 122–132

DOI

89
Ghorbanpour A, Gumidyala A, Grabow L C, Crossley S P, Rimer J D. Epitaxial growth of ZSM-5@Silicalite-1: A core-shell zeolite designed with passivated surface acidity. ACS Nano, 2015, 9(4): 4006–4016

DOI

90
Peng C, Liu Z, Yonezawa Y, Yanaba Y, Katada N, Murayama I, Segoshi S, Okubo T, Wakihara T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277: 197–202

DOI

91
Li N, Zhang Y Y, Chen L, Au C T, Yin S F. Synthesis and application of HZSM-5@silicalite-1 core-shell composites for the generation of light olefins from CH3Br. Microporous and Mesoporous Materials, 2016, 227: 76–80

DOI

92
Zhai Y, Zhang S, Shang Y, Song Y, Wang W, Ma T, Zhang L, Gong Y, Xu J, Deng F. Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science & Technology, 2019, 9(3): 659–671

DOI

93
Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988

DOI

94
Van Vu D, Miyamoto M, Nishiyama N, Ichikawa S, Egashira Y, Ueyama K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials, 2008, 115(1–2): 106–112

95
Vanvu D, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis, 2006, 243(2): 389–394

DOI

96
Zhou W, Zhang S Y, Hao X Y, Guo H, Zhang C, Zhang Y Q, Liu S X. MFI-type boroaluminosilicate: A comparative study between the direct synthesis and the templating method. Journal of Solid State Chemistry, 2006, 179(3): 855–865

DOI

97
Su X F, Wang G L, Bai X F, Wu W, Xiao L F, Fang Y J, Zhang J W. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375

DOI

98
Hsieh C Y, Chen Y Y, Lin Y C. Ga-substituted nanoscale HZSM-5 in methanol aromatization: The cooperative action of the bronsted acid and the extra-framework Ga species. Industrial & Engineering Chemistry Research, 2018, 57(23): 7742–7751

DOI

99
Jiang X, Su X F, Bai X F, Li Y Z, Yang L, Zhang K, Zhang Y, Liu Y, Wu W. Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous and Mesoporous Materials, 2018, 263: 243–250

DOI

100
Qiu F R, Wang X B, Zhang X F, Liu H, Liu S Q, Yeung K L. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147(2–3): 316–322

DOI

101
Serrano D P, Sanz R, Pizarro P, Moreno I. Synthesis of hierarchical TS-1 zeolite from silanized seeds. Topics in Catalysis, 2010, 53(19–20): 1319–1329

DOI

102
Song W L, Zhang B, Chen L F, Shi J, Cheng X W, Wu L H, Yang W M, Zhou J, Zhang Y H, Tao Y W, Tang Y. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: The role of the zeolite shell on light-olefin production. Catalysis Science & Technology, 2016, 6(10): 3559–3567

DOI

103
Shi J, Chen L F, Ren N, Zhang Y H, Tang Y. Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone. Chemical Communications, 2012, 48(68): 8583–8585

DOI

Outlines

/