Frontiers of Chemical Science and Engineering >
Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties
Received date: 28 Feb 2019
Accepted date: 15 Apr 2019
Published date: 15 Apr 2020
Copyright
As an important zeolite material, MFI zeolites, as well as their controllable synthesis, are of great interest in both basic and applied science. Among the developed synthetic approaches, the seed-induced method has gradually evolved into a facile, low-cost, and even green alternative to give zeolites the desirable physicochemical properties. In this review, we briefly summarize the development of seed-induced syntheses of diverse functional MFI zeolites, where the “living” seed crystals not only direct the formation of zeolitic framework but also function as special “templates” or “units” to fine-tune the zeolite materials with diverse sizes, shapes, compositions, morphologies and pore structures. Moreover, on the basis of their structural features and crystallization behaviors in seed-induced synthesis, we reveal the roles of seeds and discuss the related crystallization mechanisms including both classical and non-classical pathways. We also want to guide readers to investigate the structure-performance relationships between these functional MFI zeolite catalysts and suitable catalytic reactions.
Zhaoqi Ye , Hongbin Zhang , Yahong Zhang , Yi Tang . Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 143 -158 . DOI: 10.1007/s11705-019-1852-x
1 |
Corma A, Martinez A. Zeolites and zeotypes as catalysts. Advanced Materials, 1995, 7(2): 137–144
|
2 |
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
|
3 |
Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903
|
4 |
Hartmann M, Machoke A G, Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews, 2016, 45(12): 3313–3330
|
5 |
Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48(4): 1095–1149
|
6 |
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702
|
7 |
Serrano D P, Escola J M, Pizarro P. Synthesis strategies in the search for hierarchical zeolites. Chemical Society Reviews, 2013, 42(9): 4004–4035
|
8 |
Meng X J, Xiao F S. Green routes for synthesis of zeolites. Chemical Reviews, 2014, 114(2): 1521–1543
|
9 |
Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376
|
10 |
Masoumifard N, Guillet-Nicolas R, Kleitz F. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials. Advanced Materials, 2018, 30(16): 1704439
|
11 |
Majano G, Darwiche A, Mintova S, Valtchev V. Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084–7091
|
12 |
Ren N, Yang Z J, Lv X C, Shi J, Zhang Y H, Tang Y. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology. Microporous and Mesoporous Materials, 2010, 131(1–3): 103–114
|
13 |
Iyoki K, Kamimura Y, Itabashi K, Shimojima A, Okubo T. Synthesis of MTW-type zeolites in the absence of organic structure-directing agent. Chemistry Letters, 2010, 39(7): 730–731
|
14 |
Kamimura Y, Itabashi K, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “green MTW” from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 2012, 147(1): 149–156
|
15 |
Yu Q J, Chen J, Zhang Q, Li C Y, Cui Q K. Micron ZSM-11 microspheres seed-assisted synthesis of hierarchical submicron ZSM-11 with intergrowth morphology. Materials Letters, 2014, 120: 97–100
|
16 |
Snyder M A, Tsapatsis M. Hierarchical nanomanufacturing: From shaped zeolite nanoparticles to high-performance separation membranes. Angewandte Chemie International Edition, 2007, 46(40): 7560–7573
|
17 |
Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. Journal of Materials Chemistry, 2012, 22(34): 17381–17403
|
18 |
Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Yue J H, Gao Z. Zeolitic tissue through wood cell templating. Advanced Materials, 2002, 14(12): 926–929
|
19 |
Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Hollow zeolite capsules: A novel approach for fabrication and guest encapsulation. Chemistry of Materials, 2002, 14(8): 3217–3219
|
20 |
Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464
|
21 |
Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218
|
22 |
Zhang H B, Zhao Y, Zhang H X, Wang P C, Shi Z P, Mao J J, Zhang Y H, Tang Y. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(21): 7141–7151
|
23 |
Zhang H B, Zhang H X, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chemistry of Materials, 2017, 29(21): 9247–9255
|
24 |
De Yoreo J J, Gilbert P U P A, Sommerdijk N A J M, Penn R L, Whitelam S, Joester D, Zhang H Z, Rimer J D, Navrotsky A, Banfield J F,
|
25 |
Olafson K N, Li R, Alamani B G, Rimer J D. Engineering crystal modifiers: Bridging classical and nonclassical crystallization. Chemistry of Materials, 2016, 28(23): 8453–8465
|
26 |
Kumar M, Luo H, Roman-Leshkov Y, Rimer J D. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. Journal of the American Chemical Society, 2015, 137(40): 13007–13017
|
27 |
Zhao Y, Zhang H B, Wang P C, Xue F Q, Ye Z, Zhang Y H, Tang Y. Tailoring the morphology of MTW zeolite mesocrystals: Intertwined classical/nonclassical crystallization. Chemistry of Materials, 2017, 29(8): 3387–3396
|
28 |
Zhang H B, Hu Z J, Huang L, Zhang H X, Song K S, Wang L, Shi Z P, Ma J X, Zhuang Y, Shen W,
|
29 |
Zhang H B, Song K S, Wang L, Zhang H X, Zhang Y H, Tang Y. Organic structure directing agent-free and seed-induced synthesis of enriched intracrystal mesoporous ZSM-5 zeolite for shape-selective reaction. ChemCatChem, 2013, 5(10): 2874–2878
|
30 |
Zhang H B, Ma Y C, Song K S, Zhang Y H, Tang Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. Journal of Catalysis, 2013, 302: 115–125
|
31 |
Hu Z J, Zhang H B, Wang L, Zhang H X, Zhang Y H, Xu H L, Shen W, Tang Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catalysis Science & Technology, 2014, 4(9): 2891–2895
|
32 |
Betke U, Lieb A. Micro-macroporous composite materials—preparation techniques and selected applications: A review. Advanced Engineering Materials, 2018, 20(9): 1800252
|
33 |
Buciuman F C, Kraushaar-Czarnetzki B. Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catalysis Today, 2001, 69(1–4): 337–342
|
34 |
Silva E R, Silva J M, Vaz M F, Oliveira F A C, Ribeiro F. Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Materials Letters, 2009, 63(5): 572–574
|
35 |
Zhang B, Davis S A, Mann S, Mendelson N H. Bacterial templating of zeolite fibres with hierarchical structure. Chemical Communications, 2000, 9: 781–782
|
36 |
Huang L M, Wang Z B, Sun J Y, Miao L, Li Q Z, Yan Y S, Zhao D Y. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531
|
37 |
Jung K T, Hyun J H, Shul Y G, Kim D S. Synthesis of fibrous titanium silicalite (FTS-1) zeolite. Zeolites, 1997, 19(2–3): 161–168
|
38 |
Jung K T, Hyun J H, Shul Y G, Koo K K. Nanoparticle synthesis of titanium silicalite for fiber, film, and monolith formation. AIChE Journal. American Institute of Chemical Engineers, 1997, 43(S11): 2802–2808
|
39 |
Wang H T, Huang L M, Wang Z B, Mitra A, Yan Y S. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions. Chemical Communications, 2001, 15: 1364–1365
|
40 |
Wang Z B, Wang H T, Mitra A, Huang L M, Yan Y S. Pure-silica zeolite low-k dielectric thin films. Advanced Materials, 2001, 13(10): 746–749
|
41 |
Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277(5330): 1232–1237
|
42 |
Wang X D, Tang Y, Wang Y J, Gao Z, Yang W L, Fu S K. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162
|
43 |
Wang Y J, Tang Y, Wang X D, Yang W L, Gao Z. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method. Chemistry Letters, 2000, 29(11): 1344–1345
|
44 |
Rhodes K H, Davis S A, Caruso F, Zhang B J, Mann S. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000, 12(10): 2832–2834
|
45 |
Dong A G, Wang Y J, Wang D J, Yang W L, Zhang Y H, Ren N, Gao Z, Tang Y. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors. Microporous and Mesoporous Materials, 2003, 64(1–3): 69–81
|
46 |
Dong A A, Wang Y J, Tang Y, Zhang Y H, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510
|
47 |
Valtchev V. Silicalite-1 hollow spheres and bodies with a regular system of macrocavities. Chemistry of Materials, 2002, 14(10): 4371–4377
|
48 |
Lai Z P, Tsapatsis M, Nicolich J R. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers. Advanced Functional Materials, 2004, 14(7): 716–729
|
49 |
Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154
|
50 |
Kerr G T. Chemistry of crystalline aluminosilicates. I. factors affecting formation of zeolite A. Journal of Physical Chemistry, 1966, 70(4): 1047–1050
|
51 |
Kacirek H, Lechert H. Investigations on growth of the zeolite type NaY. Journal of Physical Chemistry, 1975, 79(15): 1589–1593
|
52 |
Kerr G T. Chemistry of crystalline aluminosilicates. IV. factors affecting formation of zeolites X and B. Journal of Physical Chemistry, 1968, 72(4): 1385–1386
|
53 |
Dutta P K, Bronic J. Mechanism of zeolite formation—seed gel interaction. Zeolites, 1994, 14(4): 250–255
|
54 |
Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Organotemplate-free and fast route for synthesizing Beta zeolite. Chemistry of Materials, 2008, 20(14): 4533–4535
|
55 |
Ren N, Bronic J, Subotic B, Lv X C, Yang Z J, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous and Mesoporous Materials, 2011, 139(1–3): 197–206
|
56 |
Ren N, Bronic J, Subotic B, Song Y M, Lv X C, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous and Mesoporous Materials, 2012, 147(1): 229–241
|
57 |
Yu Q J, Zhang Q, Liu J W, Li C Y, Cui Q K. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5. CrystEngComm, 2013, 15(38): 7680–7687
|
58 |
Nada M H, Larsen S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 2017, 239: 444–452
|
59 |
Pan F, Lu X C, Wang T Z, Yan Y. Submicron ZSM-5 synthesized by green and fast route. Materials Letters, 2017, 196: 245–247
|
60 |
Serrano D P, Aguado J, Morales G, Rodriguez J M, Peral A, Thommes M, Epping J D, Chmelka B F. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654
|
61 |
Serrano D P, Pinnavaia T J, Aguado J, Escola J M, Peral A, Villalba L. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: Mediating the mesoporosity contribution by changing the organosilane type. Catalysis Today, 2014, 227: 15–25
|
62 |
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
|
63 |
Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618–14627
|
64 |
Liu M, Li J H, Jia W Z, Qin M J, Wang Y N, Tong K, Chen H H, Zhu Z R. Seed-induced synthesis of hierarchical ZSM-5 nanosheets in the presence of hexadecyl trimethyl ammonium bromide. RSC Advances, 2015, 5(12): 9237–9240
|
65 |
Chen H B, Wang Y Q, Sun C, Wang X, Wang C. Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene. Catalysis Communications, 2018, 112: 10–14
|
66 |
Zhu Y, Hua Z L, Song Y D, Wu W, Zhou X X, Zhou J, Shi J L. Highly chemoselective esterification for the synthesis of monobutyl itaconate catalyzed by hierarchical porous zeolites. Journal of Catalysis, 2013, 299: 20–29
|
67 |
Yu Q J, Meng X J, Liu J W, Li C Y, Cui Q K. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Microporous and Mesoporous Materials, 2013, 181: 192–200
|
68 |
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 2005, 82(1–2): 1–78
|
69 |
Warzywoda J, Edelman R D, Thompson R W. Thoughts on the induction time in zeolite crystallization. Zeolites, 1989, 9(3): 187–192
|
70 |
Zhang H X, Zhang H B, Wang P C, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion. RSC Advances, 2016, 6(53): 47623–47631
|
71 |
Kirschhock C E A, Ravishankar R, Jacobs P A, Martens J A. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. Journal of Physical Chemistry B, 1999, 103(50): 11021–11027
|
72 |
Davis T M, Drews T O, Ramanan H, He C, Dong J S, Schnablegger H, Katsoulakis M A, Kokkoli E, McCormick A V, Penn R L, Tsapatsis M. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Materials, 2006, 5(5): 400–408
|
73 |
Song R Q, Colfen H. Mesocrystals-ordered nanoparticle superstructures. Advanced Materials, 2010, 22(12): 1301–1330
|
74 |
Fang Y M, Hu H Q, Chen G H. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chemistry of Materials, 2008, 20(5): 1670–1672
|
75 |
de Moor P P E A, Beelen T P M, Komanschek B U, Beck L W, Wagner P, Davis M E, van Santen R A. Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chemistry (Weinheim an der Bergstrasse, Germany), 1999, 5(7): 2083–2088
|
76 |
Zheng J W, Zhang W P, Liu Z T, Huo Q S, Zhu K K, Zhou X G, Yuan W K. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: Growth mechanism, hierarchical structure control and catalytic properties. Microporous and Mesoporous Materials, 2016, 225: 74–87
|
77 |
Zhao Y, Ye Z Q, Wang L, Zhang H B, Xue F Q, Xie S H, Cao X M, Zhang Y H, Tang Y. Engineering fractal MTW zeolite mesocrystal: Particle-based dendritic growth via twinning-plane induced crystallization. Crystal Growth & Design, 2018, 18(2): 1101–1108
|
78 |
Wang P C, Zhao Y, Zhang H B, Yu T, Zhang Y H, Tang Y. Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Advances, 2017, 7(38): 23272–23278
|
79 |
Wang L, Zhu S C, Shen M K, Tian H W, Xie S H, Zhang H B, Zhang Y H, Tang Y. Fractal MTW zeolite crystals: Hidden dimensions in nanoporous materials. Angewandte Chemie International Edition, 2017, 56(39): 11764–11768
|
80 |
Kumar M, Li R, Rimer J D. Assembly and evolution of amorphous precursors in zeolite L crystallization. Chemistry of Materials, 2016, 28(6): 1714–1727
|
81 |
Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617
|
82 |
Wang L, Yan N N, Liu X N, Zhao X B, Shen M K, Liu L F, Tian P, Guo P, Liu Z M. Unraveling the twin and tunability of the crystal domain sizes in the medium-pore zeolite ZSM-57 by electron crystallography. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(4): 1029–1036
|
83 |
Socci J, Osatiashtiani A, Kyriakou G, Bridgwater T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A, General, 2019, 570: 218–227
|
84 |
Zhang H Y, Wang L, Zhang D L, Meng X J, Xiao F S. Mesoporous and Al-rich MFI crystals assembled with aligned nanorods in the absence of organic templates. Microporous and Mesoporous Materials, 2016, 233: 133–139
|
85 |
Hoff T C, Gardner D W, Thilakaratne R, Proano-Aviles J, Brown R C, Tessonnier J P. Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Applied Catalysis A, General, 2017, 529: 68–78
|
86 |
Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. Journal of the American Chemical Society, 2012, 134(28): 11542–11549
|
87 |
Ji Y Y, Wang Y Q, Xie B, Xiao F S. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites. Comments on Inorganic Chemistry, 2016, 36(1): 1–16
|
88 |
Shao J, Fu T J, Ma Q, Ma Z, Zhang C M, Li Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 2019, 273: 122–132
|
89 |
Ghorbanpour A, Gumidyala A, Grabow L C, Crossley S P, Rimer J D. Epitaxial growth of ZSM-5@Silicalite-1: A core-shell zeolite designed with passivated surface acidity. ACS Nano, 2015, 9(4): 4006–4016
|
90 |
Peng C, Liu Z, Yonezawa Y, Yanaba Y, Katada N, Murayama I, Segoshi S, Okubo T, Wakihara T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277: 197–202
|
91 |
Li N, Zhang Y Y, Chen L, Au C T, Yin S F. Synthesis and application of HZSM-5@silicalite-1 core-shell composites for the generation of light olefins from CH3Br. Microporous and Mesoporous Materials, 2016, 227: 76–80
|
92 |
Zhai Y, Zhang S, Shang Y, Song Y, Wang W, Ma T, Zhang L, Gong Y, Xu J, Deng F. Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science & Technology, 2019, 9(3): 659–671
|
93 |
Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988
|
94 |
Van Vu D, Miyamoto M, Nishiyama N, Ichikawa S, Egashira Y, Ueyama K. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials, 2008, 115(1–2): 106–112
|
95 |
Vanvu D, Miyamoto M, Nishiyama N, Egashira Y, Ueyama K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis, 2006, 243(2): 389–394
|
96 |
Zhou W, Zhang S Y, Hao X Y, Guo H, Zhang C, Zhang Y Q, Liu S X. MFI-type boroaluminosilicate: A comparative study between the direct synthesis and the templating method. Journal of Solid State Chemistry, 2006, 179(3): 855–865
|
97 |
Su X F, Wang G L, Bai X F, Wu W, Xiao L F, Fang Y J, Zhang J W. Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chemical Engineering Journal, 2016, 293: 365–375
|
98 |
Hsieh C Y, Chen Y Y, Lin Y C. Ga-substituted nanoscale HZSM-5 in methanol aromatization: The cooperative action of the bronsted acid and the extra-framework Ga species. Industrial & Engineering Chemistry Research, 2018, 57(23): 7742–7751
|
99 |
Jiang X, Su X F, Bai X F, Li Y Z, Yang L, Zhang K, Zhang Y, Liu Y, Wu W. Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous and Mesoporous Materials, 2018, 263: 243–250
|
100 |
Qiu F R, Wang X B, Zhang X F, Liu H, Liu S Q, Yeung K L. Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147(2–3): 316–322
|
101 |
Serrano D P, Sanz R, Pizarro P, Moreno I. Synthesis of hierarchical TS-1 zeolite from silanized seeds. Topics in Catalysis, 2010, 53(19–20): 1319–1329
|
102 |
Song W L, Zhang B, Chen L F, Shi J, Cheng X W, Wu L H, Yang W M, Zhou J, Zhang Y H, Tao Y W, Tang Y. An Fe-Mn-Cu/SiO2@silicalite-1 catalyst for CO hydrogenation: The role of the zeolite shell on light-olefin production. Catalysis Science & Technology, 2016, 6(10): 3559–3567
|
103 |
Shi J, Chen L F, Ren N, Zhang Y H, Tang Y. Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone. Chemical Communications, 2012, 48(68): 8583–8585
|
/
〈 | 〉 |