RESEARCH ARTICLE

Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction

  • Hao Xu 1 ,
  • Chi Lei 1 ,
  • Qinming Wu , 1 ,
  • Qiuyan Zhu 1 ,
  • Xiangju Meng 1 ,
  • Daniel Dai 2 ,
  • Stefan Maurer 2 ,
  • Andrei-Nicolae Parvulescu 3 ,
  • Ulrich Müller 3 ,
  • Fengshou Xiao , 1
Expand
  • 1. Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
  • 2. BASF Catalysts (Shanghai) Co., Ltd., Shanghai 201206, China
  • 3. BASF SE, Ludwigshafen 67056, Germany

Received date: 28 Jan 2019

Accepted date: 23 Mar 2019

Published date: 15 Apr 2020

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

SSZ-39 zeolite with AEI framework structure is a good catalyst candidate for the methanol-to-olefins (MTO) reaction. However, the diffusion limitation and coke formation often results in fast deactivation of the SSZ-39 zeolite catalyst. One solution for this challenge is to introduce mesoporosity in the SSZ-39 zeolite. Herein, we report the synthesis of mesoporous SSZ-39 zeolite using an organosilane surfactant, N,N-dimethyl-N-(3-(trimethoxysilyl)propyl)octan-1-aminium chloride, as a mesopore template and N,N-dimethyl-cis-2,6-dimethylpiperidinium as a micropore template. The obtained zeolites were characterized by X-ray diffraction, N2 sorption, scanning electron microscopy, temperature programmed desorption of ammonia, and magic angle spinning nuclear magnetic resonance of 27Al. The results show that the mesoporous SSZ-39 zeolite has high crystallinity, meso/microporosity, high surface area, cuboid morphology, and abundant acidic sites. More importantly, this mesoporous SSZ-39 zeolite exhibits enhanced catalyst lifetime in the MTO reaction due to the presence of mesoporosity for fast mass transfer, compared with a conventional SSZ-39 zeolite without mesoporosity.

Cite this article

Hao Xu , Chi Lei , Qinming Wu , Qiuyan Zhu , Xiangju Meng , Daniel Dai , Stefan Maurer , Andrei-Nicolae Parvulescu , Ulrich Müller , Fengshou Xiao . Organosilane surfactant-assisted synthesis of mesoporous SSZ-39 zeolite with enhanced catalytic performance in the methanol-to-olefins reaction[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 267 -274 . DOI: 10.1007/s11705-019-1845-9

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2017YFC0211101), and the National Natural Science Foundation of China (Grant Nos. 21333009, 21703203 and 21673205).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1845-9 and is accessible for authorized users.
1
Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Wahedi Y A, Bhan A, Hashimi S A, Terasaki O, Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

DOI

2
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7265): 246–249

DOI

3
Xu H, Wu Q, Chu Y, Jiang J, Zhang L, Pan S, Zhang C, Zhu L, Deng F, Meng X, Efficient synthesis of aluminosilicate RTH zeolite with good catalytic performances in NH3-SCR and MTO reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(18): 8705–8711

DOI

4
Bereciartua P J, Cantin A, Corma A, Jorda J L, Palomino M, Rey F, Valencia S, Corcoran E W Jr, Kortunov P, Ravikovitch P I, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 2017, 358(6366): 1068–1071

DOI

5
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821

DOI

6
Martín N, Paris C, Vennestrom P N R, Thogersen J R, Moliner M, Corma A. Cage-based small-pore catalysts for NH3-SCR prepared by combing bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B: Environmental, 2017, 217: 125–136

DOI

7
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161

DOI

8
Grand J, Talapaneni S N, Vicente A, Fernandez C, Dib E, Aleksandrov H A, Vayssilov G N, Retoux R, Boullay P, Gilson J P, et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nature Materials, 2017, 16(10): 1010–1015

DOI

9
Shi J, Wang Y, Yang W, Tang Y, Xie Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44(24): 8877–8903

DOI

10
Yu Z B, Han Y, Zhao L, Huang S, Zheng Q Y, Lin S, Cordova A, Zou X, Sun J. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction. Chemistry of Materials, 2012, 24(19): 3701–3706

DOI

11
Dusselier M, Davis M E. Small-pore zeolites: Synthesis and catalysis. Chemical Reviews, 2018, 118(11): 5265–5329

DOI

12
Martín N, Moliner M, Corma A. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 2015, 51(49): 9965–9968

DOI

13
Zhu X, Hofmann J P, Mezari B, Kosinov N, Wu L, Qian Q, Weckhuysen B M, Asahina S, Ruiz-Martinez J, Hensen E J M. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catalysis, 2016, 6(4): 2163–2177

DOI

14
Sun Q, Xie Z, Yu J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. National Science Review, 2018, 5(4): 542–558

DOI

15
Wu L, Degirmenci V, Magusin P C M M, Lousberg N J H G M, Hensen E J M. Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 2013, 298: 27–40

DOI

16
Sun Q, Wang N, Bai R, Chen X, Yu J. Seeding induced nano-sized hierarchical SAPO-34 zeolites: Cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(39): 14978–14982

DOI

17
Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510

DOI

18
Pan S, Wu Q, Wang X, Chen F, Meng X, Xiao F S. Mesoporous EU-1 zeolite synthesized in the presence of cationic polymer. Microporous and Mesoporous Materials, 2016, 235: 246–252

DOI

19
Gu F, Wei F, Yang J, Lin N, Lin W, Wang Y, Zhu J. New strategy to synthesis of hierarchical mesoporous zeolites. Chemistry of Materials, 2010, 22(8): 2442–2450

DOI

20
Dusselier M, Schmidt J E, Moulton R, Haymore B, Hellums M, Davis M E. Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39. Chemistry of Materials, 2015, 27(7): 2695–2702

DOI

21
Kakiuchi Y, Yamasaki Y, Tsunoji N, Takamitsu Y, Sadakane M, Sano T. One-pot synthesis of phosphorus-modified AEI zeolites derived by the dual-template method as a durable catalyst with enhanced thermal/hydrothermal stability for selective catalytic reduction of NOx by NH3. Chemistry Letters, 2016, 45(2): 122–124

DOI

22
Nakazawa N, Inagaki S, Kubota Y. Direct hydrothermal synthesis of high-silica SSZ-39 zeolite with small particle size. Chemistry Letters, 2016, 45(8): 919–921

DOI

23
Moliner M, Franch C, Palamares E, Grill M, Corma A. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 2012, 48(66): 8264–8266

DOI

24
Bhaddra B N, Seo P W, Jun J W, Jeong J H, Kim T W, Kim C U, Jhung S H. Synthesis of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 2016, 235: 135–142

DOI

25
Maruo T, Yamanaka N, Tsunoji N, Sadakane M, Sano T. Facile synthesis of AEI zeolties by hydrothermal conversion of FAU zeolties in the presence of tetrathylphosphonium cations. Chemistry Letters, 2014, 43(3): 302–304

DOI

26
Schmidt J E, Deem M W, Lew C, Davis T M. Computationally-guided synthesis of the 8-ring zeolite AEI. Topics in Catalysis, 2015, 58(7-9): 410–415

DOI

27
Ransom R, Coote J, Moulton R, Gao F, Shantz D F. Synthesis and growth kinetics of zeolite SSZ-39. Industrial & Engineering Chemistry Research, 2017, 56(15): 4350–4356

DOI

28
Nakagawa Y, Lee G S, Harris T V, Yuen L T, Zones S I. Guest/host relationship in zeolite synthesis: Ring-substituted piperidines and the remarkable adamantine mimicry by 1-azonio spiro [5.5] undecanes. Microporous and Mesoporous Materials, 1998, 22(1-3): 69–85

DOI

29
Wagner P, Nakagawa Y, Lee G S, Davis M E, Elomari S, Medrud R C, Zones S I. Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 2000, 122(2): 263–273

DOI

30
Martin N, Li Z, Martinez-Triguero J, Yu J, Moliner M, Corma A. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 2016, 52(36): 6072–6075

DOI

31
Dusselier M, Deimund M A, Schmidt J E, Davis M E. Methanol-to-olefins catalysis with hydrothermally treated zeolite SSZ-39. ACS Catalysis, 2015, 5(10): 6078–6085

DOI

Outlines

/