REVIEW ARTICLE

Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks

  • Tingting Zhao ,
  • Niamat Ullah ,
  • Yajun Hui ,
  • Zhenhua Li
Expand
  • Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

Received date: 20 Nov 2018

Accepted date: 25 Dec 2018

Published date: 15 Sep 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO2 methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal–organic frameworks are discussed.

Cite this article

Tingting Zhao , Niamat Ullah , Yajun Hui , Zhenhua Li . Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 444 -457 . DOI: 10.1007/s11705-019-1811-6

1
Mott-Smith H M. History of “plasmas”. Nature, 1971, 233(5316): 219–219

DOI

2
Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348–368

DOI

3
Hinokuma S, Misumi S, Yoshida H, Machida M. Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catalysis Science & Technology, 2015, 5(9): 4249–4257

DOI

4
Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kreesen G, Whitehead I C, Murphy A B, Gutsol A F, Starikovskaia S. The 2012 plasma roadmap. Journal of Physics. D, Applied Physics, 2012, 45(25): 253001

DOI

5
Kim S H, Moon S Y, Park J Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Topics in Catalysis, 2017, 60(12): 812–822

DOI

6
Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catalysis Today, 2002, 72(3-4): 173–184

DOI

7
Wang Z Y, Liu C J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11: 277–293

DOI

8
Liu C J, Li M Y, Wang J Q, Zhou X T, Guo Q T, Yan J M, Li Y Z. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348

DOI

9
Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chemistry, 2005, 17(1): 69–77

10
Bian L, Zhang L, Xia R, Li Z H. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. Journal of Natural Gas Science and Engineering, 2015, 27: 1189–1194

DOI

11
Fu T J, Huang C D, Lv J, Li Z H. Fischer-Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Science & Technology, 2014, 16(3): 232–238

DOI

12
Park S, Choe W, Moon S Y, Yoo S J. Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Advances in Physics-X, 2018, 4(1): 1526114

13
Ouyang J, Li B, He F, Dai D. Nonlinear phenomena in dielectric barrier discharges: Pattern, striation and chaos. Plasma Science & Technology, 2018, 20(10): 103002

DOI

14
Borra J P. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science, 2018, 125: 208–236

DOI

15
Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X, Zuo Y R. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel, 2014, 128: 268–273

DOI

16
Naseh M V, Khodadadi A A, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379

DOI

17
Chen Q, Kaneko T, Hatakeyama R. Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 2012, 521: 113–117

DOI

18
Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation. Catalysis Today, 2013, 211: 104–108

DOI

19
Liu C J, Zhao Y, Li Y Z, Zhang D S, Chang Z, Bu X H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3–13

DOI

20
Ohkubo Y, Hamaguchi Y, Seino S, Nakagawa T, Kageyama S, Kugai J, Nitani H, Ueno K, Yamamoto T A. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 2013, 48(14): 5047–5054

DOI

21
Pastor-Perez L, Belda-Alcazar V, Marini C, Pastor-Blas M M, Sepulveda-Escribana A, Ramos-Fernandez E V. Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in water-gas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225: 121–127

DOI

22
Liu C, Lan J P, Sun F L, Zhang Y H, Li J L, Hong J P. Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer-Tropsch catalysts. RSC Advances, 2016, 6(62): S7701–S7708

DOI

23
Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446

DOI

24
Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Jang B W L, Liu C J. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110

DOI

25
Sadakiyo M, Heima M, Yamamoto T, Matsumura S, Matsuura M, Sugimoto S, Kato K, Takata M, Yamauchi M. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions (Cambridge, England), 2015, 44(36): 15764–15768

DOI

26
Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518

DOI

27
Gilman A B, Piskarev M S, Kuznetsov A A, Ozerin A N. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma. High Energy Chemistry, 2017, 51(2): 136–144

DOI

28
Sun Y P, Nie Y, Yuan J, Wu A S, Shen J L, Ji D X, Yu F W, Ji J B. Application of plasma technology in the reaction of methane carbon dioxide reforming to syngas. Chemical Industry and Engineering Progress, 2010, 29(S1): 295–300

29
Chung W C, Chang M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renewable & Sustainable Energy Reviews, 2016, 62: 13–31

DOI

30
Zhou T, Jang K, Jang B W L. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catalysis Today, 2013, 211: 147–155

DOI

31
Zhou C M, Wang X, Jia X L, Wang H P, Liu C J, Yang Y H. Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. Electrochemistry Communications, 2012, 18: 33–36

DOI

32
Platonov E A, Bratchikova I G, Yagodovskii V D, Murga Z V. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment. Russian Journal of Physical Chemistry A, 2017, 91(8): 1422–1426

DOI

33
Wu Y W, Chung W C, Chang M B. Modification of Ni/gamma-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen. International Journal of Hydrogen Energy, 2015, 40(25): 8071–8080

DOI

34
Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144

DOI

35
Movasati A, Alavi S M, Mazloom G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel, 2019, 236: 1254–1262

DOI

36
Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2018, 239: 324–333

DOI

37
Li Z, Das S, Hongmanorom P, Dewangan N, Wai M H, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology, 2018, 8(11): 2763–2778

DOI

38
Tu X, Whitehead J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39(18): 9658–9669

DOI

39
Lim M S, Chun Y N. Carbon dioxide destruction with methane reforming by a novel plasma-catalytic converter. Plasma Chemistry and Plasma Processing, 2016, 36(5): 1211–1228

DOI

40
Li X S, Zhu B, Shi C, Xu Y, Zhu A M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(10): 2854–2860

DOI

41
Zhou Z P, Zhang J M, Ye T H, Zhao P H, Xia W D. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. Chinese Science Bulletin, 2011, 56(20): 2162–2166

DOI

42
Li X, Tao X M, Yin Y X. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Transactions on Plasma Science, 2009, 37(6): 759–763

DOI

43
Jo S, Lee D H, Song Y H. Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 2015, 130: 101–108

DOI

44
Park S, Lee M, Bae J, Hong D Y, Park Y K, Hwang Y K, Jeong M G, Kim Y D. Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor. Topics in Catalysis, 2017, 60(9-11): 735–742

DOI

45
Ray D, Reddy P M K, Challapalli S. Glass beads packed DBD-plasma assisted dry reforming of methane. Topics in Catalysis, 2017, 60(12-14): 869–878

DOI

46
Zhang K, Mukhriza T, Liu X T, Greco P P, Chiremba E. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges. Applied Catalysis A, General, 2015, 502: 138–149

DOI

47
Zheng X G, Tan S Y, Dong L C, Li S B, Chen H M, Wei S A. Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 2015, 137: 250–258

DOI

48
Chung W C, Tsao I Y, Chang M B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Conversion and Management, 2018, 164: 417–428

DOI

49
Xia Y, Lu N, Wang B, Li J, Shang K, Jiang N, Wu Y. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42(36): 22776–22785

DOI

50
Montoro-Damas A M, Brey J J, Rodríguez M A, Gonzalez-Elipe A R, Cotrino J. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296: 268–275

DOI

51
Jin L J, Li Y, Feng Y Q, Hu H Q, Nu A M. Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma. Journal of Analytical and Applied Pyrolysis, 2017, 126: 194–200

DOI

52
Mustafa M F, Fu X D, Lu W J, Liu Y J, Abbas Y, Wang H T, Arslan M T. Application of non-thermal plasma technology on fugitive methane destruction: Configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 2018, 174: 670–677

DOI

53
Nguyen H H, Nasonova A, Nah I W, Kim K S. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 2015, 32: 58–62

DOI

54
Wang B W, Sun Q M, Lu Y J, Yang M L, Yan W J. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chinese Journal of Chemical Engineering, 2014, 22(1): 104–112

DOI

55
Iwarere S A, Rohani V J, Ramjugernath D, Fulcheri L. Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40(8): 3388–3401

DOI

56
Xu G H, Jiang E Y, Sheng J. Technology and application of plasma. Beijing: Chemical Industry Press, 2006: 1–242 (in Chinese)

57
Yap D, Tatibouet J M, Batiot-Dupeyrat C. Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299: 263–271

DOI

58
Sentek J, Krawczyk K, Mlotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K H, Schmidt-Szalowski K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 2010, 94(1-2): 19–26

DOI

59
Kim J, Abbott M S, Go D B, Hicks J C. Enhancing C‒H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Letters, 2016, 1(1): 94–99

DOI

60
Snoeckx R, Aerts R, Tu X, Bogaerts A. Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117(10): 4957–4970

DOI

61
Kim H H, Teramoto Y, Negishi N, Ogata A. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 2015, 256: 13–22

DOI

62
Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J, Allen M R. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242): 1158–1162

DOI

63
Matthews H D, Gillett N P, Stott P A, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459(7248): 829–832

DOI

64
Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith S J, Janetos A, Edmonds J. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324(5931): 1183–1186

DOI

65
Lu Y W, Yan Q G, Han J, Cao B B, Street J, Yu F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193: 369–384

DOI

66
Foit S R, Vinke I C, de Haart L G J, Eichel R A. Power-to-syngas: An enabling technology for the transition of the energy system? Angewandte Chemie International Edition, 2017, 56(20): 5402–5411

DOI

67
Wang L, Yi Y H, Guo H C, Tu X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100

DOI

68
Saeidi S, Amin N A S, Rahimpour M R. Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81

69
Federsel C, Jackstell R, Beller M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angewandte Chemie International Edition, 2010, 49(36): 6254–6257

DOI

70
Dimitriou I, Garcia-Gutierrez P, Elder R H, Cuellar-France R M, Azapagic A, Allen R W K. Carbon dioxide utilisation for production of transport fuels: Process and economic analysis. Energy & Environmental Science, 2015, 8(6): 1775–1789

DOI

71
Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1): 33–52

DOI

72
Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic-hydrogen of carbon dioxide. Nature, 1994, 368(6468): 231–233

DOI

73
Alexmills G, Steffgen F. Catalytic methanation. Catalysis Reviews, 1974, 8(1): 159–210

DOI

74
Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 34015–34016

DOI

75
Pinhão N R, Janeco A, Branco J B. Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2011, 31(3): 427–439

DOI

76
Eliasson B, Kogelschatz U, Xue B Z, Zhou L M. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357

DOI

77
Gómez-Ramírez A, Rico V J, Cotrino J, Gonzalez-Elipe A, Lambert R M. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 2014, 4(2): 402–408

DOI

78
Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044

DOI

79
Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763

DOI

80
van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers W A, Engeln R, Graswinckel M F, Zoethout E, de Sandena M C M V. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248

DOI

81
Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Green P W, Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126

DOI

82
Silva T, Britun N, Godfroid T, Snyders R. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 217–221

DOI

83
Spencer L F, Gallimore A D. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology, 2013, 22(1): 015019

DOI

84
Ramakers M, Trenchev G, Heijkers S, Wang W Z, Bogaerts A. Gliding arc plasmatron: Providing an alternative method for carbon dioxide conversion. ChemSusChem, 2017, 10(12): 2642–2652

DOI

85
Li K, Liu J L, Li X S, Zhu X B, Zhu A M. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288: 671–679

DOI

86
Liu J L, Park H W, Chung W J, Ahn W S, Park D W. Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285: 243–251

DOI

87
Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437–449

DOI

88
Shapoval V, Marotta E, Ceretta C, Konjevic N, Ivkovic M, Schiorlin M, Paradisi C. Development and testing of a self-triggered spark reactor for plasma driven dry reforming of methane. Plasma Processes and Polymers, 2014, 11(8): 787–797

DOI

89
Zhu B, Li X S, Shi C, Liu J L, Zhao T L, Zhu A M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37(6): 4945–4954

DOI

90
Zhu B, Li X S, Liu J L, Zhu X B, Zhu A M. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264: 445–452

DOI

91
Lee C J, Lee D H, Kim T. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catalysis Today, 2017, 293: 97–104

DOI

92
Nizio M, Benrabbah R, Krzak M, Debek R, Motak M, Caavadias S, Galvez M E, Da Costa P. Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83: 14–17

DOI

93
Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E, Da Costa P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 2016, 41(27): 11584–11592

DOI

94
Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67

DOI

95
Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofmann-Caris R C H M, Maric D, Reid J P, Ceriani E, Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 1–125

DOI

96
Bruggeman P J, Czarnetzki U. Retrospective on ‘The 2012 Plasma Roadmap’. Journal of Physics. D, Applied Physics, 2016, 49(43): 431001

DOI

97
Aziz M A A, Jalil A A, Triwahyono S, Mukti R R, Taufiq-Yap Y H, Sazegar M R. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147: 359–368

DOI

98
Ren J, Guo H L, Yang J Y, Qin Z F, Lin J Y, Li Z. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 2015, 351: 504–516

DOI

99
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472

DOI

100
Upham D C, Derk A R, Sharma S, Metiu H, McFarland E W. CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface. Catalysis Science & Technology, 2015, 5(3): 1783–1791

DOI

101
Azzolina-Jury F, Bento D, Henriques C, Thibault-Starzyk F. Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 2017, 22: 97–109

102
Jiang Q, Lin Q, Huang Z T. Study on carbon dioxide methanation catalyst III. Catalytic reaction mechanism under the action of Ni-Ru- rare earth/ZrO2. Journal of Catalysis, 1997, (3): 189–139 (in Chinese)

103
Jwa E, Lee S B, Lee H W, Mok Y S. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 2013, 108: 89–93

DOI

104
Speckmann F W, Mueller D, Koehler J, Birke K P. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor. Journal of CO2 Utilization, 2017, 19: 130–136

105
Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 2015, 8(4): 702–716

DOI

106
Azzolina-Jury F, Thibault-Starzyk F. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Topics in Catalysis, 2017, 60(19): 1709–1721

DOI

107
Yan X L, Bao J H, Zhao B R, Yuan C, Hu T, Huang C F, Li Y N. CO dissociation on Ni/SiO2: The formation of different carbon materials. Topics in Catalysis, 2017, 60(12-14): 890–897

DOI

108
Dai B, Gong W M, Zhang X L, Zhang L, He R. Studies on methanation of CO2 under synergism plasma with catalyst. Chemical Journal of Chinese Universities, 2001, 22(5): 817–820 (in Chinese)

109
Jing L, Li Z H. Conversion of natural gas to C hydrocarbons via cold plasma technology. Journal of Energy Chemistry, 2010, 19(4): 375–379

110
Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Methane conversion to C2 and higher hydrocarbons via dielectric-barrier discharge plasma at atmospheric pressure. Chemical Reaction Engineering & Technology, 2006, 22(4): 356–360

111
Lee D H, Song Y H, Kim K T, Lee J O. Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 2013, 33(4): 647–661

DOI

112
Zhang X L, Di L B, Zhou Q. Methane conversion under cold plasma over Pd-containing ionic liquids immobilized on gamma-Al2O3. Journal of Energy Chemistry, 2013, 22(3): 446–450

DOI

113
Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chemistry, 2002, 4(2): 73–80

DOI

114
Nozaki T, Hattori A, Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 2004, 98(4): 607–616

DOI

115
Wang D W, Ma T C. Catalytic methane coupling of C2 hydrocarbons by glow discharge plasma. Nuclear Fusion and Plasma Physics, 2006, 4: 327–330 (in Chinese)

116
Goujard V, Tatibouët J M, Batiot-Dupeyrat C. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: Effect of helium dilution and kinetic model. Plasma Chemistry and Plasma Processing, 2011, 31(2): 315–325

DOI

117
Thanyachotpaiboon K, Chavadej S, Caldwell T A, Lobban L L, Mallinson R G. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(10): 2252–2257

DOI

118
Zhang A J, Zhu A M, Guo J, Xu Y, Shi C. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156(3): 601–606

DOI

119
Jo S, Lee D H, Kang S, Song Y H. Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 2013, 20(8): 14–31

DOI

120
Jo S, Lee D H, Kim K T, Kang W S, Song Y H. Methane activation using Kr and Xe in a dielectric barrier discharge reactor. Physics of Plasmas, 2014, 21(10): 14–31

DOI

121
Sudnick J J, Corwin D L. VOC control techniques. Hazardous Waste & Hazardous Materials, 1994, 11(1): 129–143

DOI

122
Keller R A, Dyer J A. Abating halogenated VOCs. Chemical Engineering (Albany, N.Y.), 1998, 105(1): 100–105

123
Kim H H, Ogata A, Futamura S. Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science & Technology, 2007, 1: 46–51

124
Dyer J A, Mulholland K. Toxic air emissions. What is the full cost to your business? Chemical Engineering Environmental Engineering, 1994, 101 (S2): 4–8

125
Okubo M, Yamamoto T, Kuroki T, Fukumoto H. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Transactions on Industry Applications, 2001, 37(5): 1505–1511

DOI

126
Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 2005, 25(3): 227–243

DOI

127
Ohshima T, Kondo T, Kitajima N, Sato M. Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 2010, 46(1): 23–28

DOI

128
Vandenbroucke A, Mora M, Morent R, De Geyter N, Leys C. TCE abatement with a plasma-catalysis combined system using MnO2 as catalyst. 21st International Symposium on Plasma Chemistry, 2013, 156: 94–100

129
Dinh M T N, Giraudon J M, Lamonier J F, Vandenbroucke A, De Geyter N, Leys C, Morent R. Plasma-catalysis of low TCE concentration in air using LaMnO3+d as catalyst. Applied Catalysis B: Environmental, 2014, 147(147): 904–911

DOI

130
Assadi A A, Bouzaza A, Vallet C, Wolbert D. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254(13): 124–132

DOI

131
Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1): 9–15

DOI

132
Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 1996, 32(1): 100–105

DOI

133
Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 1999, 19(3): 383–394

DOI

134
Ogata A, Ito D, Mizuno K, Kushiyamaet S, Yamamoto T. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 2001, 37(4): 959–964

DOI

135
Oh S M, Kim H H, Einaga H, Ogata A, Futamura S, Park D W. Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 2006, 506-507: 418–422

DOI

136
Kuroki T, Hirai K, Matsuoka S, Kim J Y, Okubo M. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow. IEEE Transactions on Industry Applications, 2011, 47(4): 1916–1921

DOI

137
Feng F D, Zheng Y Y, Shen X J, Zheng Q Z, Dai S L, Zhang X M, Huang Y F, Liu Z, Yan K P. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environmental Science & Technology, 2015, 49(11): 6831–6837

DOI

138
Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R. Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 2015, 5(2): 718–746

DOI

139
Schiavon M, Torretta V, Casazza A, Ragazzi M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water, Air, and Soil Pollution, 2017, 228(10): 388

DOI

140
Vandenbroucke A M, Morent R, De Geyter N, Leys C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195: 30–54

DOI

141
Feng X X, Liu H X, He C, Shen Z X, Wang T B. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catalysis Science & Technology, 2018, 8(4): 936–954

DOI

142
Yang F, Li Y F, Liu T, Xu K, Zhang L Q, Xu C M, Gao J S. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chemical Engineering Journal, 2013, 226: 52–58

DOI

143
Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

DOI

144
Wang S Y, Wang X Y, Wang L, Pu Q S, Du W B, Guo G S. Plasma-assisted alignment in the fabrication of microchannel-array-based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Analytica Chimica Acta, 2018, 1018: 70–77

DOI

145
Li S J, Li L L, Chen Z, Xue G P, Jiang L G, Zheng K, Chen J C, Li R, Yuan C, Huang M D. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149: 37–42

DOI

146
Cong Z, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194: 80–86

DOI

147
Cogal S, Ela S E, Ali A K, Cogal G C, Micusik M, Omastova M, Oksuz A U. Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Research on Chemical Intermediates, 2018, 44(5): 3325–3335

DOI

148
Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 8081–8086

DOI

149
Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-organic frameworks for heterogeneous basic catalysis. Chemical Reviews, 2017, 117(12): 8129–8176

DOI

150
Jing P, Zhang S Y, Chen W J, Wang L, Shi W, Cheng P. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chemistry-a European Journal, 2018, 24(15): 3754–3759

DOI

151
Carrasco J A, Romero J, Abellan G, Hernandez-Saz J, Molina S I, Marti-Gastaldo C, Coronado E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144

DOI

152
Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. H5PV2Mo10O40 encapsulated in MIL-101(Cr): Facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions (Cambridge, England), 2018, 47(18): 6394–6403

DOI

153
Zhen W L, Li B, Lu G X, Ma J T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chemical Communications, 2015, 51(9): 1728–1731

DOI

154
Li Y J, Miao J P, Sun X J, Xiao J, Li Y W, Wang H H, Xia Q B, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298: 191–197

DOI

155
Zeng L, Xiao L, Long Y K, Shi X W. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516: 274–283

DOI

156
Sadakiyo M, Yoshimaru S, Kasai H, Kato K, Takata M, Yamauchi M. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52(54): 8385–8388

DOI

157
Park K S, Ni Z, Côté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

DOI

158
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042

DOI

159
Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud K P, Tilset M. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20(44): 9848–9851

DOI

160
Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M. Hydrogen dissociation by gold clusters. Angewandte Chemie, 2009, 121(50): 9679–9682

DOI

161
Bahri M, Haghighat F, Rohani S, Kazemian H. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 2017, 320: 308–318

DOI

162
Li B H, Yu T H, Weng C Y, Yang C C, Lin C H, Lee S. Thermal and plasma synthesis of metal oxide nanoparticles from MOFs with SERS characterization. Vibrational Spectroscopy, 2016, 84: 146–152

DOI

163
Dou S, Dong C L, Hu Z, Huang Y C, Chen J L, Tao L, Yan D F, Chen D W, Shen C H, Chou S L, Atomic-scale CoOx species in metal-organic frameworks for oxygen evolution reaction. Advanced Functional Materials, 2017, 27(36): 1702546

DOI

Outlines

/