Frontiers of Chemical Science and Engineering >
Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks
Received date: 20 Nov 2018
Accepted date: 25 Dec 2018
Published date: 15 Sep 2019
Copyright
Plasma catalysis is drawing increasing attention worldwide. Plasma is a partially ionized gas comprising electrons, ions, molecules, radicals, and photons. Integration of catalysis and plasma can enhance catalytic activity and stability. Some thermodynamically unfavorable reactions can easily occur with plasma assistance. Compared to traditional thermal catalysis, plasma reactors can save energy because they can be operated at much lower temperatures or even room temperature. Additionally, the low bulk temperature of cold plasma makes it a good alternative for treatment of temperature-sensitive materials. In this review, we summarize the plasma-assisted reactions involved in dry reforming of methane, CO2 methanation, the methane coupling reaction, and volatile organic compound abatement. Applications of plasma for modification of metal–organic frameworks are discussed.
Key words: plasma catalysis; methane; carbon dioxide; VOCs; metal–organic frameworks
Tingting Zhao , Niamat Ullah , Yajun Hui , Zhenhua Li . Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 444 -457 . DOI: 10.1007/s11705-019-1811-6
1 |
Mott-Smith H M. History of “plasmas”. Nature, 1971, 233(5316): 219–219
|
2 |
Jiang B, Zheng J T, Qiu S, Wu M B, Zhang Q H, Yan Z F, Xue Q Z. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 2014, 236: 348–368
|
3 |
Hinokuma S, Misumi S, Yoshida H, Machida M. Nanoparticle catalyst preparation using pulsed arc plasma deposition. Catalysis Science & Technology, 2015, 5(9): 4249–4257
|
4 |
Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kreesen G, Whitehead I C, Murphy A B, Gutsol A F, Starikovskaia S. The 2012 plasma roadmap. Journal of Physics. D, Applied Physics, 2012, 45(25): 253001
|
5 |
Kim S H, Moon S Y, Park J Y. Non-colloidal nanocatalysts fabricated using arc plasma deposition and their application in heterogenous catalysis and photocatalysis. Topics in Catalysis, 2017, 60(12): 812–822
|
6 |
Liu C J, Vissokov G P, Jang B W L. Catalyst preparation using plasma technologies. Catalysis Today, 2002, 72(3-4): 173–184
|
7 |
Wang Z Y, Liu C J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy, 2015, 11: 277–293
|
8 |
Liu C J, Li M Y, Wang J Q, Zhou X T, Guo Q T, Yan J M, Li Y Z. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348
|
9 |
Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chemistry, 2005, 17(1): 69–77
|
10 |
Bian L, Zhang L, Xia R, Li Z H. Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst. Journal of Natural Gas Science and Engineering, 2015, 27: 1189–1194
|
11 |
Fu T J, Huang C D, Lv J, Li Z H. Fischer-Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Science & Technology, 2014, 16(3): 232–238
|
12 |
Park S, Choe W, Moon S Y, Yoo S J. Electron characterization in weakly ionized collisional plasmas: From principles to techniques. Advances in Physics-X, 2018, 4(1): 1526114
|
13 |
Ouyang J, Li B, He F, Dai D. Nonlinear phenomena in dielectric barrier discharges: Pattern, striation and chaos. Plasma Science & Technology, 2018, 20(10): 103002
|
14 |
Borra J P. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for high efficiency air filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science, 2018, 125: 208–236
|
15 |
Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X, Zuo Y R. Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel, 2014, 128: 268–273
|
16 |
Naseh M V, Khodadadi A A, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379
|
17 |
Chen Q, Kaneko T, Hatakeyama R. Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas-liquid interfacial discharge plasma. Chemical Physics Letters, 2012, 521: 113–117
|
18 |
Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Argon plasma reduced Pt nanocatalysts supported on carbon nanotube for aqueous phase benzyl alcohol oxidation. Catalysis Today, 2013, 211: 104–108
|
19 |
Liu C J, Zhao Y, Li Y Z, Zhang D S, Chang Z, Bu X H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3–13
|
20 |
Ohkubo Y, Hamaguchi Y, Seino S, Nakagawa T, Kageyama S, Kugai J, Nitani H, Ueno K, Yamamoto T A. Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 2013, 48(14): 5047–5054
|
21 |
Pastor-Perez L, Belda-Alcazar V, Marini C, Pastor-Blas M M, Sepulveda-Escribana A, Ramos-Fernandez E V. Effect of cold Ar plasma treatment on the catalytic performance of Pt/CeO2 in water-gas shift reaction (WGS). Applied Catalysis B: Environmental, 2018, 225: 121–127
|
22 |
Liu C, Lan J P, Sun F L, Zhang Y H, Li J L, Hong J P. Promotion effects of plasma treatment on silica supports and catalyst precursors for cobalt Fischer-Tropsch catalysts. RSC Advances, 2016, 6(62): S7701–S7708
|
23 |
Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446
|
24 |
Wang Z, Zhang Y, Neyts E C, Cao X X, Zhang X S, Jang B W L, Liu C J. Catalyst preparation with plasmas: How does it work? ACS Catalysis, 2018, 8(3): 2093–2110
|
25 |
Sadakiyo M, Heima M, Yamamoto T, Matsumura S, Matsuura M, Sugimoto S, Kato K, Takata M, Yamauchi M. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Transactions (Cambridge, England), 2015, 44(36): 15764–15768
|
26 |
Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518
|
27 |
Gilman A B, Piskarev M S, Kuznetsov A A, Ozerin A N. Modification of ultrahigh-molecular-weight polyethylene by low-temperature plasma. High Energy Chemistry, 2017, 51(2): 136–144
|
28 |
Sun Y P, Nie Y, Yuan J, Wu A S, Shen J L, Ji D X, Yu F W, Ji J B. Application of plasma technology in the reaction of methane carbon dioxide reforming to syngas. Chemical Industry and Engineering Progress, 2010, 29(S1): 295–300
|
29 |
Chung W C, Chang M B. Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renewable & Sustainable Energy Reviews, 2016, 62: 13–31
|
30 |
Zhou T, Jang K, Jang B W L. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catalysis Today, 2013, 211: 147–155
|
31 |
Zhou C M, Wang X, Jia X L, Wang H P, Liu C J, Yang Y H. Nanoporous platinum grown on nickel foam by facile plasma reduction with enhanced electro-catalytic performance. Electrochemistry Communications, 2012, 18: 33–36
|
32 |
Platonov E A, Bratchikova I G, Yagodovskii V D, Murga Z V. Carbon dioxide reforming of methane on a cobalt catalyst subjected to plasma-chemical treatment. Russian Journal of Physical Chemistry A, 2017, 91(8): 1422–1426
|
33 |
Wu Y W, Chung W C, Chang M B. Modification of Ni/gamma-Al2O3 catalyst with plasma for steam reforming of ethanol to generate hydrogen. International Journal of Hydrogen Energy, 2015, 40(25): 8071–8080
|
34 |
Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144
|
35 |
Movasati A, Alavi S M, Mazloom G. Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel, 2019, 236: 1254–1262
|
36 |
Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2018, 239: 324–333
|
37 |
Li Z, Das S, Hongmanorom P, Dewangan N, Wai M H, Kawi S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catalysis Science & Technology, 2018, 8(11): 2763–2778
|
38 |
Tu X, Whitehead J C. Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39(18): 9658–9669
|
39 |
Lim M S, Chun Y N. Carbon dioxide destruction with methane reforming by a novel plasma-catalytic converter. Plasma Chemistry and Plasma Processing, 2016, 36(5): 1211–1228
|
40 |
Li X S, Zhu B, Shi C, Xu Y, Zhu A M. Carbon dioxide reforming of methane in kilohertz spark-discharge plasma at atmospheric pressure. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(10): 2854–2860
|
41 |
Zhou Z P, Zhang J M, Ye T H, Zhao P H, Xia W D. Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor. Chinese Science Bulletin, 2011, 56(20): 2162–2166
|
42 |
Li X, Tao X M, Yin Y X. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Transactions on Plasma Science, 2009, 37(6): 759–763
|
43 |
Jo S, Lee D H, Song Y H. Product analysis of methane activation using noble gases in a non-thermal plasma. Chemical Engineering Science, 2015, 130: 101–108
|
44 |
Park S, Lee M, Bae J, Hong D Y, Park Y K, Hwang Y K, Jeong M G, Kim Y D. Plasma-assisted non-oxidative conversion of methane over Mo/HZSM-5 catalyst in DBD reactor. Topics in Catalysis, 2017, 60(9-11): 735–742
|
45 |
Ray D, Reddy P M K, Challapalli S. Glass beads packed DBD-plasma assisted dry reforming of methane. Topics in Catalysis, 2017, 60(12-14): 869–878
|
46 |
Zhang K, Mukhriza T, Liu X T, Greco P P, Chiremba E. A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges. Applied Catalysis A, General, 2015, 502: 138–149
|
47 |
Zheng X G, Tan S Y, Dong L C, Li S B, Chen H M, Wei S A. Experimental and kinetic investigation of the plasma catalytic dry reforming of methane over perovskite LaNiO3 nanoparticles. Fuel Processing Technology, 2015, 137: 250–258
|
48 |
Chung W C, Tsao I Y, Chang M B. Novel plasma photocatalysis process for syngas generation via dry reforming of methane. Energy Conversion and Management, 2018, 164: 417–428
|
49 |
Xia Y, Lu N, Wang B, Li J, Shang K, Jiang N, Wu Y. Dry reforming of CO2-CH4 assisted by high-frequency AC gliding arc discharge: Electrical characteristics and the effects of different parameters. International Journal of Hydrogen Energy, 2017, 42(36): 22776–22785
|
50 |
Montoro-Damas A M, Brey J J, Rodríguez M A, Gonzalez-Elipe A R, Cotrino J. Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296: 268–275
|
51 |
Jin L J, Li Y, Feng Y Q, Hu H Q, Nu A M. Integrated process of coal pyrolysis with CO2 reforming of methane by spark discharge plasma. Journal of Analytical and Applied Pyrolysis, 2017, 126: 194–200
|
52 |
Mustafa M F, Fu X D, Lu W J, Liu Y J, Abbas Y, Wang H T, Arslan M T. Application of non-thermal plasma technology on fugitive methane destruction: Configuration and optimization of double dielectric barrier discharge reactor. Journal of Cleaner Production, 2018, 174: 670–677
|
53 |
Nguyen H H, Nasonova A, Nah I W, Kim K S. Analysis on CO2 reforming of CH4 by corona discharge process for various process variables. Journal of Industrial and Engineering Chemistry, 2015, 32: 58–62
|
54 |
Wang B W, Sun Q M, Lu Y J, Yang M L, Yan W J. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chinese Journal of Chemical Engineering, 2014, 22(1): 104–112
|
55 |
Iwarere S A, Rohani V J, Ramjugernath D, Fulcheri L. Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. International Journal of Hydrogen Energy, 2015, 40(8): 3388–3401
|
56 |
Xu G H, Jiang E Y, Sheng J. Technology and application of plasma. Beijing: Chemical Industry Press, 2006: 1–242 (in Chinese)
|
57 |
Yap D, Tatibouet J M, Batiot-Dupeyrat C. Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299: 263–271
|
58 |
Sentek J, Krawczyk K, Mlotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke K H, Schmidt-Szalowski K. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Applied Catalysis B: Environmental, 2010, 94(1-2): 19–26
|
59 |
Kim J, Abbott M S, Go D B, Hicks J C. Enhancing C‒H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Letters, 2016, 1(1): 94–99
|
60 |
Snoeckx R, Aerts R, Tu X, Bogaerts A. Plasma-based dry reforming: A computational study ranging from the nanoseconds to seconds time scale. Journal of Physical Chemistry C, 2013, 117(10): 4957–4970
|
61 |
Kim H H, Teramoto Y, Negishi N, Ogata A. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 2015, 256: 13–22
|
62 |
Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J, Allen M R. Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 2009, 458(7242): 1158–1162
|
63 |
Matthews H D, Gillett N P, Stott P A, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature, 2009, 459(7248): 829–832
|
64 |
Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith S J, Janetos A, Edmonds J. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324(5931): 1183–1186
|
65 |
Lu Y W, Yan Q G, Han J, Cao B B, Street J, Yu F. Fischer-Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst. Fuel, 2017, 193: 369–384
|
66 |
Foit S R, Vinke I C, de Haart L G J, Eichel R A. Power-to-syngas: An enabling technology for the transition of the energy system? Angewandte Chemie International Edition, 2017, 56(20): 5402–5411
|
67 |
Wang L, Yi Y H, Guo H C, Tu X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catalysis, 2018, 8(1): 90–100
|
68 |
Saeidi S, Amin N A S, Rahimpour M R. Hydrogenation of CO2 to value-added products—A review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81
|
69 |
Federsel C, Jackstell R, Beller M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angewandte Chemie International Edition, 2010, 49(36): 6254–6257
|
70 |
Dimitriou I, Garcia-Gutierrez P, Elder R H, Cuellar-France R M, Azapagic A, Allen R W K. Carbon dioxide utilisation for production of transport fuels: Process and economic analysis. Energy & Environmental Science, 2015, 8(6): 1775–1789
|
71 |
Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1): 33–52
|
72 |
Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic-hydrogen of carbon dioxide. Nature, 1994, 368(6468): 231–233
|
73 |
Alexmills G, Steffgen F. Catalytic methanation. Catalysis Reviews, 1974, 8(1): 159–210
|
74 |
Paulussen S, Verheyde B, Tu X, De Bie C, Martens T, Petrovic D, Bogaerts A, Sels B. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Science & Technology, 2010, 19(3): 34015–34016
|
75 |
Pinhão N R, Janeco A, Branco J B. Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 2011, 31(3): 427–439
|
76 |
Eliasson B, Kogelschatz U, Xue B Z, Zhou L M. Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst. Industrial & Engineering Chemistry Research, 1998, 37(8): 3350–3357
|
77 |
Gómez-Ramírez A, Rico V J, Cotrino J, Gonzalez-Elipe A, Lambert R M. Low temperature production of formaldehyde from carbon dioxide and ethane by plasma-assisted catalysis in a ferroelectrically moderated dielectric barrier discharge reactor. ACS Catalysis, 2014, 4(2): 402–408
|
78 |
Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044
|
79 |
Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763
|
80 |
van Rooij G J, van den Bekerom D C M, den Harder N, Minea T, Berden G, Bongers W A, Engeln R, Graswinckel M F, Zoethout E, de Sandena M C M V. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discussions, 2015, 183: 233–248
|
81 |
Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Green P W,
|
82 |
Silva T, Britun N, Godfroid T, Snyders R. Optical characterization of a microwave pulsed discharge used for dissociation of CO2. Plasma Sources Science & Technology, 2014, 23(2): 217–221
|
83 |
Spencer L F, Gallimore A D. CO2 dissociation in an atmospheric pressure plasma/catalyst system: A study of efficiency. Plasma Sources Science & Technology, 2013, 22(1): 015019
|
84 |
Ramakers M, Trenchev G, Heijkers S, Wang W Z, Bogaerts A. Gliding arc plasmatron: Providing an alternative method for carbon dioxide conversion. ChemSusChem, 2017, 10(12): 2642–2652
|
85 |
Li K, Liu J L, Li X S, Zhu X B, Zhu A M. Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288: 671–679
|
86 |
Liu J L, Park H W, Chung W J, Ahn W S, Park D W. Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chemical Engineering Journal, 2016, 285: 243–251
|
87 |
Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2016, 36(2): 437–449
|
88 |
Shapoval V, Marotta E, Ceretta C, Konjevic N, Ivkovic M, Schiorlin M, Paradisi C. Development and testing of a self-triggered spark reactor for plasma driven dry reforming of methane. Plasma Processes and Polymers, 2014, 11(8): 787–797
|
89 |
Zhu B, Li X S, Shi C, Liu J L, Zhao T L, Zhu A M. Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37(6): 4945–4954
|
90 |
Zhu B, Li X S, Liu J L, Zhu X B, Zhu A M. Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264: 445–452
|
91 |
Lee C J, Lee D H, Kim T. Enhancement of methanation of carbon dioxide using dielectric barrier discharge on a ruthenium catalyst at atmospheric conditions. Catalysis Today, 2017, 293: 97–104
|
92 |
Nizio M, Benrabbah R, Krzak M, Debek R, Motak M, Caavadias S, Galvez M E, Da Costa P. Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83: 14–17
|
93 |
Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez M E, Da Costa P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. International Journal of Hydrogen Energy, 2016, 41(27): 11584–11592
|
94 |
Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67
|
95 |
Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofmann-Caris R C H M, Maric D, Reid J P, Ceriani E,
|
96 |
Bruggeman P J, Czarnetzki U. Retrospective on ‘The 2012 Plasma Roadmap’. Journal of Physics. D, Applied Physics, 2016, 49(43): 431001
|
97 |
Aziz M A A, Jalil A A, Triwahyono S, Mukti R R, Taufiq-Yap Y H, Sazegar M R. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B: Environmental, 2014, 147: 359–368
|
98 |
Ren J, Guo H L, Yang J Y, Qin Z F, Lin J Y, Li Z. Insights into the mechanisms of CO2 methanation on Ni(111) surfaces by density functional theory. Applied Surface Science, 2015, 351: 504–516
|
99 |
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472
|
100 |
Upham D C, Derk A R, Sharma S, Metiu H, McFarland E W. CO2 methanation by Ru-doped ceria: The role of the oxidation state of the surface. Catalysis Science & Technology, 2015, 5(3): 1783–1791
|
101 |
Azzolina-Jury F, Bento D, Henriques C, Thibault-Starzyk F. Chemical engineering aspects of plasma-assisted CO2 hydrogenation over nickel zeolites under partial vacuum. Journal of CO2 Utilization, 2017, 22: 97–109
|
102 |
Jiang Q, Lin Q, Huang Z T. Study on carbon dioxide methanation catalyst III. Catalytic reaction mechanism under the action of Ni-Ru- rare earth/ZrO2. Journal of Catalysis, 1997, (3): 189–139 (in Chinese)
|
103 |
Jwa E, Lee S B, Lee H W, Mok Y S. Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Processing Technology, 2013, 108: 89–93
|
104 |
Speckmann F W, Mueller D, Koehler J, Birke K P. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor. Journal of CO2 Utilization, 2017, 19: 130–136
|
105 |
Aerts R, Somers W, Bogaerts A. Carbon dioxide splitting in a dielectric barrier discharge plasma: A combined experimental and computational study. ChemSusChem, 2015, 8(4): 702–716
|
106 |
Azzolina-Jury F, Thibault-Starzyk F. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Topics in Catalysis, 2017, 60(19): 1709–1721
|
107 |
Yan X L, Bao J H, Zhao B R, Yuan C, Hu T, Huang C F, Li Y N. CO dissociation on Ni/SiO2: The formation of different carbon materials. Topics in Catalysis, 2017, 60(12-14): 890–897
|
108 |
Dai B, Gong W M, Zhang X L, Zhang L, He R. Studies on methanation of CO2 under synergism plasma with catalyst. Chemical Journal of Chinese Universities, 2001, 22(5): 817–820 (in Chinese)
|
109 |
Jing L, Li Z H. Conversion of natural gas to C hydrocarbons via cold plasma technology. Journal of Energy Chemistry, 2010, 19(4): 375–379
|
110 |
Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Methane conversion to C2 and higher hydrocarbons via dielectric-barrier discharge plasma at atmospheric pressure. Chemical Reaction Engineering & Technology, 2006, 22(4): 356–360
|
111 |
Lee D H, Song Y H, Kim K T, Lee J O. Comparative study of methane activation process by different plasma sources. Plasma Chemistry and Plasma Processing, 2013, 33(4): 647–661
|
112 |
Zhang X L, Di L B, Zhou Q. Methane conversion under cold plasma over Pd-containing ionic liquids immobilized on gamma-Al2O3. Journal of Energy Chemistry, 2013, 22(3): 446–450
|
113 |
Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents. Green Chemistry, 2002, 4(2): 73–80
|
114 |
Nozaki T, Hattori A, Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catalysis Today, 2004, 98(4): 607–616
|
115 |
Wang D W, Ma T C. Catalytic methane coupling of C2 hydrocarbons by glow discharge plasma. Nuclear Fusion and Plasma Physics, 2006, 4: 327–330 (in Chinese)
|
116 |
Goujard V, Tatibouët J M, Batiot-Dupeyrat C. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: Effect of helium dilution and kinetic model. Plasma Chemistry and Plasma Processing, 2011, 31(2): 315–325
|
117 |
Thanyachotpaiboon K, Chavadej S, Caldwell T A, Lobban L L, Mallinson R G. Conversion of methane to higher hydrocarbons in AC nonequilibrium plasmas. AIChE Journal. American Institute of Chemical Engineers, 1998, 44(10): 2252–2257
|
118 |
Zhang A J, Zhu A M, Guo J, Xu Y, Shi C. Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156(3): 601–606
|
119 |
Jo S, Lee D H, Kang S, Song Y H. Methane activation using noble gases in a dielectric barrier discharge reactor. Physics of Plasmas, 2013, 20(8): 14–31
|
120 |
Jo S, Lee D H, Kim K T, Kang W S, Song Y H. Methane activation using Kr and Xe in a dielectric barrier discharge reactor. Physics of Plasmas, 2014, 21(10): 14–31
|
121 |
Sudnick J J, Corwin D L. VOC control techniques. Hazardous Waste & Hazardous Materials, 1994, 11(1): 129–143
|
122 |
Keller R A, Dyer J A. Abating halogenated VOCs. Chemical Engineering (Albany, N.Y.), 1998, 105(1): 100–105
|
123 |
Kim H H, Ogata A, Futamura S. Complete oxidation of volatile organic compounds (VOCs) using plasma-driven catalysis and oxygen plasma. International Journal of Plasma Environmental Science & Technology, 2007, 1: 46–51
|
124 |
Dyer J A, Mulholland K. Toxic air emissions. What is the full cost to your business? Chemical Engineering Environmental Engineering, 1994, 101 (S2): 4–8
|
125 |
Okubo M, Yamamoto T, Kuroki T, Fukumoto H. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator. IEEE Transactions on Industry Applications, 2001, 37(5): 1505–1511
|
126 |
Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 2005, 25(3): 227–243
|
127 |
Ohshima T, Kondo T, Kitajima N, Sato M. Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 2010, 46(1): 23–28
|
128 |
Vandenbroucke A, Mora M, Morent R, De Geyter N, Leys C. TCE abatement with a plasma-catalysis combined system using MnO2 as catalyst. 21st International Symposium on Plasma Chemistry, 2013, 156: 94–100
|
129 |
Dinh M T N, Giraudon J M, Lamonier J F, Vandenbroucke A, De Geyter N, Leys C, Morent R. Plasma-catalysis of low TCE concentration in air using LaMnO3+d as catalyst. Applied Catalysis B: Environmental, 2014, 147(147): 904–911
|
130 |
Assadi A A, Bouzaza A, Vallet C, Wolbert D. Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination-Synergetic effect and byproducts identification. Chemical Engineering Journal, 2014, 254(13): 124–132
|
131 |
Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A, General, 2002, 236(1): 9–15
|
132 |
Yamamoto T, Mizuno K, Tamori I, Ogata A, Nifuku M, Michalska M, Prieto G. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 1996, 32(1): 100–105
|
133 |
Ogata A, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T. Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 1999, 19(3): 383–394
|
134 |
Ogata A, Ito D, Mizuno K, Kushiyamaet S, Yamamoto T. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 2001, 37(4): 959–964
|
135 |
Oh S M, Kim H H, Einaga H, Ogata A, Futamura S, Park D W. Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 2006, 506-507: 418–422
|
136 |
Kuroki T, Hirai K, Matsuoka S, Kim J Y, Okubo M. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow. IEEE Transactions on Industry Applications, 2011, 47(4): 1916–1921
|
137 |
Feng F D, Zheng Y Y, Shen X J, Zheng Q Z, Dai S L, Zhang X M, Huang Y F, Liu Z, Yan K P. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds. Environmental Science & Technology, 2015, 49(11): 6831–6837
|
138 |
Sultana S, Vandenbroucke A M, Leys C, De Geyter N, Morent R. Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 2015, 5(2): 718–746
|
139 |
Schiavon M, Torretta V, Casazza A, Ragazzi M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water, Air, and Soil Pollution, 2017, 228(10): 388
|
140 |
Vandenbroucke A M, Morent R, De Geyter N, Leys C. Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 2011, 195: 30–54
|
141 |
Feng X X, Liu H X, He C, Shen Z X, Wang T B. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catalysis Science & Technology, 2018, 8(4): 936–954
|
142 |
Yang F, Li Y F, Liu T, Xu K, Zhang L Q, Xu C M, Gao J S. Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chemical Engineering Journal, 2013, 226: 52–58
|
143 |
Liang H F, Gandi A N, Anjum D H, Wang X B, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725
|
144 |
Wang S Y, Wang X Y, Wang L, Pu Q S, Du W B, Guo G S. Plasma-assisted alignment in the fabrication of microchannel-array-based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Analytica Chimica Acta, 2018, 1018: 70–77
|
145 |
Li S J, Li L L, Chen Z, Xue G P, Jiang L G, Zheng K, Chen J C, Li R, Yuan C, Huang M D. A novel purification procedure for recombinant human serum albumin expressed in Pichia pastoris. Protein Expression and Purification, 2018, 149: 37–42
|
146 |
Cong Z, Lee S. Study of mechanical behavior of BNNT-reinforced aluminum composites using molecular dynamics simulations. Composite Structures, 2018, 194: 80–86
|
147 |
Cogal S, Ela S E, Ali A K, Cogal G C, Micusik M, Omastova M, Oksuz A U. Polyfuran-based multi-walled carbon nanotubes and graphene nanocomposites as counter electrodes for dye-sensitized solar cells. Research on Chemical Intermediates, 2018, 44(5): 3325–3335
|
148 |
Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. Highly dispersed Co-based Fischer-Tropsch synthesis catalysts from metal-organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(17): 8081–8086
|
149 |
Zhu L, Liu X Q, Jiang H L, Sun L B. Metal-organic frameworks for heterogeneous basic catalysis. Chemical Reviews, 2017, 117(12): 8129–8176
|
150 |
Jing P, Zhang S Y, Chen W J, Wang L, Shi W, Cheng P. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chemistry-a European Journal, 2018, 24(15): 3754–3759
|
151 |
Carrasco J A, Romero J, Abellan G, Hernandez-Saz J, Molina S I, Marti-Gastaldo C, Coronado E. Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures. Chemical Communications, 2016, 52(58): 9141–9144
|
152 |
Li Y Q, Gao Q, Zhang L J, Zhou Y S, Zhong Y X, Ying Y, Zhang M C, Huang C Q, Wang Y A. H5PV2Mo10O40 encapsulated in MIL-101(Cr): Facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Transactions (Cambridge, England), 2018, 47(18): 6394–6403
|
153 |
Zhen W L, Li B, Lu G X, Ma J T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chemical Communications, 2015, 51(9): 1728–1731
|
154 |
Li Y J, Miao J P, Sun X J, Xiao J, Li Y W, Wang H H, Xia Q B, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal, 2016, 298: 191–197
|
155 |
Zeng L, Xiao L, Long Y K, Shi X W. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. Journal of Colloid and Interface Science, 2018, 516: 274–283
|
156 |
Sadakiyo M, Yoshimaru S, Kasai H, Kato K, Takata M, Yamauchi M. A new approach for the facile preparation of metal-organic framework composites directly contacting with metal nanoparticles through arc plasma deposition. Chemical Communications, 2016, 52(54): 8385–8388
|
157 |
Park K S, Ni Z, Côté A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
|
158 |
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
|
159 |
Kandiah M, Usseglio S, Svelle S, Olsbye U, Lillerud K P, Tilset M. Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20(44): 9848–9851
|
160 |
Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M. Hydrogen dissociation by gold clusters. Angewandte Chemie, 2009, 121(50): 9679–9682
|
161 |
Bahri M, Haghighat F, Rohani S, Kazemian H. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor. Chemical Engineering Journal, 2017, 320: 308–318
|
162 |
Li B H, Yu T H, Weng C Y, Yang C C, Lin C H, Lee S. Thermal and plasma synthesis of metal oxide nanoparticles from MOFs with SERS characterization. Vibrational Spectroscopy, 2016, 84: 146–152
|
163 |
Dou S, Dong C L, Hu Z, Huang Y C, Chen J L, Tao L, Yan D F, Chen D W, Shen C H, Chou S L,
|
/
〈 | 〉 |