RESEARCH ARTICLE

Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries

  • Glenn J. Sim 1,2 ,
  • Kakui Ma 1 ,
  • Zhixiang Huang 1 ,
  • Shaozhuan Huang 1 ,
  • Ye Wang 1,3 ,
  • Huiying Yang , 1
Expand
  • 1. Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
  • 2. Airbus Group Innovations Singapore, Singapore 797562, Singapore
  • 3. Key Laboratory of Materials Physics of Ministry of Education, Department of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China

Received date: 04 Oct 2018

Accepted date: 08 Feb 2019

Published date: 15 Sep 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Three-dimensional Prussian blue (PB) nanostructures was obtained via a one-step hydrothermal method. Subsequently, two-dimensional tin disulfide (SnS2) nanosheets were grown onto PB through a facile hydrothermal synthesis. The as prepared SnS2/PB is further employed as the anode of sodium ion batteries (SIBs). SnS2/PB nanoarchitecture delivers a specific capacity of 725.7 mAh∙g−1 at 50 mA∙g−1. When put through more than 200 cycles, it achieved a stable cycling capacity of 400 mAh∙g−1 at 200 mA∙g−1. The stable Na+ storage properties of SnS2/PB was attributed to the synergistic effect among the conductive PB carbon, used as the template in this work. These results obtained potentially paves the way for the development of excellent electrochemical performance with stable performance of SIBs.

Cite this article

Glenn J. Sim , Kakui Ma , Zhixiang Huang , Shaozhuan Huang , Ye Wang , Huiying Yang . Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 493 -500 . DOI: 10.1007/s11705-019-1826-z

Acknowledgements

This research work is supported by Singapore University of Technology and Design DmanD center.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1826-z and is accessible for authorized users.
1
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367

2
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928–935

3
Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652–657

4
Slater M D, Kim D, Lee E, Johnson C S. Sodium ion batteries. Advanced Functional Materials, 2013, 23: 947–958

5
Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable & Sustainable Energy Reviews, 2016, 64: 106‒128

6
Liserre M, Sauter T, Hung J Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Industrial Electronics Magazine, 2010, 4(1): 18–37

7
Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013, 6(8): 2338–2360

8
Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable & Sustainable Energy Reviews, 2014, 39: 748–764

9
Cao Y, Xiao L, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L V, Yang Z, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 2012, 12(7): 3783–3787

10
Kundu D, Talaie E, Duffort V, Nazar L F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 2015, 54(11): 3431–3448

11
Wang Y, Xing G, Han Z J, Shi Y, Wong J I, Huang Z X, Ostrikov K K, Yang H Y. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6(15): 8884–8890

12
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636–11682

13
Balogun M S, Luo Y, Qiu W, Liu P, Tong Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98(Supplement C): 162–178

14
Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough J B. A superior low-cost cathode for a Na-ion battery. Angewandte Chemie International Edition, 2013, 52(7): 1964–1967

15
Deng W, Liang X, Wu X, Qian J, Cao Y, Ai X, Feng J, Yang H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Scientific Reports, 2013, 3: 2671

16
Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angewandte Chemie International Edition, 2014, 53(38): 10169–10173

17
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12(3): 194

18
Bommier C, Luo W, Gao W Y, Greaney A, Ma S, Ji X. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76(Supplement C): 165–174

19
Yan C, Lv C, Zhu Y, Chen G, Sun J, Yu G. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Advanced Materials, 2017, 29(46): 1703909

20
Wu Y, Nie P, Wu L, Dou H, Zhang X. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334: 932–938

21
Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 2015, 6: 6544

22
Seo J W. Jang J T, Park S W, Kim C, Park B, Cheon J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Advanced Materials, 2008, 20(22): 4269–4273

23
Zai J, Wang K, Su Y, Qian X, Chen J. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. Journal of Power Sources, 2011, 196(7): 3650–3654

24
Huang Z X, Wang Y, Wong J I, Yang H Y. Free standing SnS2 nanosheets on 3D graphene foam: An outstanding hybrid nanostructure anode for Li-ion batteries. 2D Materials, 2015, 2(2): 024010

25
Qu B, Ma C, Ji G, Xu C, Xu J, Meng Y S, Wang T, Lee J Y. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Advanced Materials, 2014, 26(23): 3854–3859

26
Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(24): 7181–7184

27
Liu Y, Fang X, Ge M, Rong J, Shen C, Zhang A, Enaya H A, Zhou C. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy, 2015, 16: 399–407

28
Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy & Environmental Science, 2014, 7(1): 323–328

29
Xiao L, Cao Y, Xiao J, Wang W, Kovarik L, Nie Z, Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chemical Communications, 2012, 48(27): 3321–3323

30
Prikhodchenko P V, Denis Y, Batabyal S K, Uvarov V, Gun J, Sladkevich S, Mikhaylov A A, Medvedev A G, Lev O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(22): 8431–8437

31
Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Advanced Functional Materials, 2015, 25(2): 214–220

32
Xu W, Zhao K, Zhang L, Xie Z, Cai Z, Wang Y. SnS2@graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. Journal of Alloys and Compounds, 2016, 654: 357–362

33
Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100

34
Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang J H, Zhao B, Liu M, Lin Z, Huang K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy & Environmental Science, 2017, 10(8): 1757–1763

35
Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov S V, Lin J, Fan H J. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7: 12122

36
Ren W, Zhang H, Guan C, Cheng C. Ultrathin MoS2 nanosheets@ metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Advanced Functional Materials, 2017, 27(32): 1702116

37
Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R, Cho J, Wang H L, Wu G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2 batteries. Advanced Materials, 2014, 26(9): 1378–1386

38
Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-organic framework materials as chemical sensors. Chemical Reviews, 2011, 112(2): 1105–1125

39
Rowsell J L, Yaghi O M. Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials, 2004, 73(1-2): 3–14

40
James S L. Metal-organic frameworks. Chemical Society Reviews, 2003, 32(5): 276–288

41
Huang G, Zhang F, Du X, Qin Y, Yin D, Wang L. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano, 2015, 9(2): 1592–1599

42
Neff V D. Some performance characteristics of a prussian blue battery. Journal of the Electrochemical Society, 1985, 132: 1382–1384

43
Lu Y, Wang L, Cheng J, Goodenough J B. Prussian blue: A new framework of electrode materials for sodium batteries. Chemical Communications, 2012, 48(52): 6544–6546

44
You Y, Wu X L, Yin Y X, Guo Y G. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science, 2014, 7(5): 1643–1647

45
Zhang Y, Wen Y, Liu Y, Li D, Li J. Functionalization of single-walled carbon nanotubes with prussian blue. Electrochemistry Communications, 2004, 6(11): 1180–1184

46
Jiang Y, Yu S, Wang B, Li Y, Sun W, Lu Y, Yan M, Song B, Dou S. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Advanced Functional Materials, 2016, 26(29): 5315–5321

47
Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy & Environmental Science, 2016, 9(4): 1430–1438

48
Lim Y V, Huang S, Zhang Y, Kong D, Wang Y, Guo L, Zhang J, Shi Y, Chen T P, Ang L K. Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Materials, 2018, 15: 98–107

49
Zhai C, Du N, Yang H Z D. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical Communications, 2011, 47(4): 1270–1272

50
Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W. Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm, 2012, 14(3): 832–836

51
Kim T J, Kim C, Son D, Choi M, Park B. Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007, 167(2): 529–535

52
Mukaibo H, Yoshizawa A, Momma T, Osaka T. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. Journal of Power Sources, 2003, 119: 60–63

53
Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science, 2012, 5(1): 5226–5230

54
Yue Y, Binder A J, Guo B, Zhang Z, Qiao Z A, Tian C, Dai S. Mesoporous prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angewandte Chemie International Edition, 2014, 53(12): 3134–3137

55
Liu Y, Kang H, Jiao L, Chen C, Cao K, Wang Y, Yuan H. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7(4): 1325–1332

56
Zhang Y, Zhu P, Huang L, Xie J, Zhang S, Cao G, Zhao X. Few-layered SnS2 on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Advanced Functional Materials, 2015, 25(3): 481–489

57
Yang D, Xu J, Liao X Z, He Y S, Liu H, Ma Z F. Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries. Chemical Communications, 2014, 50(87): 13377–13380

58
Nie P, Yuan J, Wang J, Le Z, Xu G, Hao L, Pang G, Wu Y, Dou H, Yan X. Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(24): 20306–20312

Outlines

/