REVIEW ARTICLE

Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review

  • Anna Khlyustova 1,2 ,
  • Cédric Labay 1,2 ,
  • Zdenko Machala 3 ,
  • Maria-Pau Ginebra 1,2 ,
  • Cristina Canal , 1,2
Expand
  • 1. Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
  • 2. Research centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
  • 3. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava 84248, Slovakia

Received date: 05 Sep 2018

Accepted date: 23 Nov 2018

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Reactive oxygen and nitrogen species (RONS) are among the key factors in plasma medicine. They are generated by atmospheric plasmas in biological fluids, living tissues and in a variety of liquids. This ability of plasmas to create a delicate mix of RONS in liquids has been used to design remote or indirect treatments for oncological therapy by treating biological fluids by plasmas and putting them in contact with the tumour. Documented effects include selective cancer cell toxicity, even though the exact mechanisms involved are still under investigation. However, the “right” dose for suitable therapeutical activity is crucial and still under debate. The wide variety of plasma sources hampers comparisons. This review focuses on atmospheric pressure plasma jets as the most studied plasma devices in plasma medicine and compiles the conditions employed to generate RONS in relevant liquids and the concentration ranges obtained. The concentrations of H2O2, NO2, NO3 and short-lived oxygen species are compared critically to provide a useful overview for the reader.

Cite this article

Anna Khlyustova , Cédric Labay , Zdenko Machala , Maria-Pau Ginebra , Cristina Canal . Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 238 -252 . DOI: 10.1007/s11705-019-1801-8

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 714793). Authors acknowledge the Ramon y Cajal fellowship of Cristina Canal. Support for the research of Maria Pau Ginebra was received through the “ICREA Academia” prize for excellence in research, funded by the Generalitat de Catalunya. Zdenko Machala acknowledges the support from Slovak Recearch and Development Agency grant APVV-17-0382.
1
Graves D B. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers, 2014, 11(12): 1120–1127

DOI

2
Graves D B. Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics. Clinical Plasma Medicine, 2014, 2(2): 38–49

DOI

3
Yan D, Sherman J H, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget, 2017, 8(9): 15977–15995

DOI

4
Weltmann K D, Von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Physics and Controlled Fusion, 2017, 59(1): 014031

DOI

5
Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Science & Technology, 2012, 21(3): 34005

DOI

6
Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G. Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Processes and Polymers, 2008, 5(4): 322–344

DOI

7
Reuter S, Von Woedtke T, Weltmann K D. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. Journal of Physics. D, Applied Physics, 2018, 51(23): 233001

DOI

8
Golda J, Held J, Redeker B, Konkowski M, Beijer P, Sobota A, Kroesen G, Braithwaite N St J, Reuter S, Turner M M, Gans T, O’Connell D, Schulz-von der Gathen V. Concepts and characteristics of the “COST Reference Microplasma Jet”. Journal of Physics. D, Applied Physics, 2016, 49(8): 084003

DOI

9
Kelly S, Golda J, Turner M M, Schulz-von der Gathen V. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. Journal of Physics. D, Applied Physics, 2015, 48(44): 444002

DOI

10
Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Capelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P, The 2017 plasma roadmap: Low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2017, 50(32): 323001

DOI

11
Kajiyama H, Utsumi F, Nakamura K, Tanaka H, Toyokuni S, Hori M, Kikkawa F. Future perspective of strategic non-thermal plasma therapy for cancer treatment. Journal of Clinical Biochemistry and Nutrition, 2016, 60(1): 33–38

DOI

12
Keidar M, Shashurin A, Volotskova O, Stepp M A, Srinivasan P, Sandler A, Trink B. Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 2013, 20(5): 057101

DOI

13
Partecke L I, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss F U, Evert M, Huebner N O, Guenther C, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer, 2012, 12(1): 473–482

DOI

14
Graves D B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics. D, Applied Physics, 2012, 45(26): 263001

DOI

15
Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513–886

DOI

16
Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science & Technology, 2014, 23(1): 015019

DOI

17
Bruggeman P J, Kushner M J, Locke B R, Gardeniers J G E, Graham W G, Graves D B, Hofman-Caris R C, Maric D, Reid J P, Ceriani E, et al. Plasma-liquid interactions: A review and roadmap. Plasma Sources Science & Technology, 2016, 25(5): 253002

DOI

18
Kim Y H, Hong Y J, Baik K Y, Kwon G C, Choi J J, Cho G S, Uhm H S, Kim D Y, Choi E H. Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chemistry and Plasma Processing, 2014, 34(3): 457–472

DOI

19
Rumbach P, Bartels D M, Sankaran R M, Go D B. The solvation of electrons by an atmospheric-pressure plasma. Nature Communications, 2015, 6(1): 7248

DOI

20
Bullock A T, Gavin D L, Ingram M D. Electron spin resonance detection of spin-trapped radicals formed during the glow-discharge electrolysis of aqueous solutions. Journal of the Chemical Society, Faraday Transactions I, 1980, 76(0): 648–653

DOI

21
Tresp H, Hammer M U, Winter J, Weltmann K D, Reuter S. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. Journal of Physics. D, Applied Physics, 2013, 46(43): 435401

DOI

22
Eisenberg G. Colorimetric determination of hydrogen peroxide. Industrial & Engineering Chemistry. Analytical Edition, 1943, 15(5): 327–328

DOI

23
Oliveira M C, Pupo Nogueira R F, Gomes Neto J, Jardim W F, Rohwedder J J R. Flow injection spectrophotometric system for hydrogen peroxide monitoring in photo-Fenton degradation processes. Quimica Nova, 2001, 24(2): 188–190

DOI

24
Griess P. Griess reagent: A solution of sulphanilic acid and a-naphthylamine in acetic acid which gives a pink colour on reaction with the solution obtained after decomposition of nitrosyl complexes. Chemische Berichte, 1897, 12: 427

25
Ikeda J I, Tanaka H, Ishikawa K, Sakakita H, Ikehara Y, Hori M. Plasma-activated medium (PAM) kills human cancer-initiating cells. Pathology International, 2018, 68(1): 23–30

DOI

26
Turrini E, Laurita R, Stancampiano A, Catanzaro E, Calcanbrini C, Maffei F, Gherardi M, Colombo V, Fimognari C. Cold atmospheric plasma induces apoptosis and oxidative stress pathway regulation in T-Lymphoblastoid leukemia cells. Oxidative Medicine and Cellular Longevity, 2017, 2017: 4271065

DOI

27
Machala Z, Tarabova B, Sersenová D, Janda M, Hensel K. Plasma activated water chemical and antibacterial effects: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. Journal of Physics. D, Applied Physics, 2018, 52(3): 034002

DOI

28
Girard P M, Arbabian A, Fleury M, Bauville G, Puech V, Dutreix M, Sousa J S. Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Scientific Reports, 2016, 6(1): 29098

DOI

29
Chen Z, Simonyan H, Cheng X, Gjika E, Lin L, Canady J, Sherman J H, Young C, Keidar M. A novel micro cold atmospheric plasma device for glioblastoma both in vitro and in vivo. Cancers (Basel), 2017, 9(6): 61

DOI

30
Oh J S, Szili E J, Ito S, Hong S H, Gaur N, Furuta H, Short R D, Hatta A. Slow molecular transport of plasma-generated reactive oxygen and nitrogen species and O2 through agarose as a surrogate for tissue. Plasma Medicine, 2015, 5(2-4): 125–143

DOI

31
Girard F, Peret M, Dumont N, Badets V, Blanc S, Gazeli K, Noel C, Belmonte T, Marlin L, Cambus J P, Correlations between gaseous and liquid phase chemistries induced by cold atmospheric plasmas in a physiological buffer. Physical Chemistry Chemical Physics, 2018, 20(14): 9198–9210

DOI

32
Gorbanev Y, O’Connell D, Chechik V. Non-thermal plasma in contact with water: The origin of species. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(10): 3496–3505

DOI

33
Chauvin J, Judée F, Yousfi M, Vicendo P, Merbahi N. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Scientific Reports, 2017, 7(1): 4562

DOI

34
Yan D, Nourmohammadi N, Bian K, Murad F, Sherman J H, Keidar M. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Scientific Reports, 2016, 6(1): 26016

DOI

35
Mohades S, Laroussi M, Sears J, Barekzi N, Razavi H. Evaluation of the effects of a plasma activated medium on cancer cells. Physics of Plasmas, 2015, 22(12): 122001

DOI

36
Canal C, Fontelo R, Hamouda I, Guillem-Marti J, Cvelbar U, Ginebra M P. Plasma-induced selectivity in bone cancer cells death. Free Radical Biology & Medicine, 2017, 110: 72–80

DOI

37
Duan J, Lu X, He G. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas, 2017, 24(7): 073506

DOI

38
Yang H, Lu R, Xian Y, Gan L, Lu X, Yang X. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line. Physics of Plasmas, 2015, 22(12): 122006

DOI

39
Takamatsu T, Kawate A, Uehara K, Oshita T, Miyahara H, Dobrynin D, Fridman G, Fridman A, Okino A. Bacterial inactivation in liquids using multi-gas plasmas. Plasma Medicine, 2012, 2(4): 237–247

DOI

40
Kurake N, Tanaka H, Ishikawa K, Kondo T, Sekine M, Nakamura K, Kajiyama H, Kikkawa F, Mizuno M, Hori M. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Archives of Biochemistry and Biophysics, 2016, 605: 102–108

DOI

41
Tanaka H, Nakamura K, Mizuno M, Ishikawa K, Takeda K, Kajiyama H, Utsumi F, Kikkawa F, Hori M. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Scientific Reports, 2016, 6(1): 36282

DOI

42
Attri P, Yusupov M, Park J H, Lingamdinne L P, Koduru J R, Shiratani M, Choi E H, Bogaerts A. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Scientific Reports, 2016, 6(1): 34419

DOI

43
Oh J, Szili E J, Ogawa K, Short R D, Ito M, Furuta H, Hatta A. UV–vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance. Japanese Journal of Applied Physics, 2017, 57(1): 0102B9

44
Wende K, Williams P, Dalluge J, Van Gaens W, Aboubakr H, Bischof J, Voedtke T, Goyal S M, Weltmann K D, Bogaerts A, Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 2015, 10(2): 29518

DOI

45
Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann K D, Broker B, Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radical Research, 2014, 48(5): 542–549

DOI

46
Winter J, Tresp H, Hammer M U, Iseni S, Kupsch S, Schmidt-Bleker A, Dunnbier M, Masur K, Weltmann K D, Reuter S. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. Journal of Physics. D, Applied Physics, 2014, 47(28): 285401

DOI

47
Schmidt A, Dietrich S, Steuer A, Weltmann K D, Von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. Journal of Biological Chemistry, 2015, 290(11): 6731–6750

DOI

48
Tresp H, Hammer M U, Weltmann K D, Reuter S. Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions. Plasma Medicine, 2013, 3(12): 45–55

DOI

49
Van Boxem W, Van Der Paal J, Gorbanev Y, Vanuytsel S, Smits E, Dewilde S, Bogaerts A. Anti-cancer capacity of plasma-treated PBS: Effect of chemical composition on cancer cell cytotoxicity. Scientific Reports, 2017, 7(1): 16478

DOI

50
Bekeschus S, Wende K, Hefny M M, Rödder K, Jablonowski H, Schmidt A, Von Woedtke T, Weltmann K D, Benedikt J. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Scientific Reports, 2017, 7(1): 2791

DOI

51
Anderson C E, Cha N R, Lindsay A D, Clark D S, Graves D B. The role of interfacial reactions in determining plasma–liquid chemistry. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1393–1415

DOI

52
Ito T, Uchida G, Nakajama A, Takenaka K, Setsuhara Y. Control of reactive oxygen and nitrogen species production in liquid by nonthermal plasma jet with controlled surrounding gas. Japanese Journal of Applied Physics, 2017, 56(1S): 01AC06

DOI

53
Kim S J, Chung T H. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Scientific Reports, 2016, 6(1): 20332

DOI

54
Girard F, Badets V, Blanc S, Gazeli K, Marlin L, Authier L, Svarnas P, Sojic N, Clement F, Arbault S. Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma. Royal Society of Chemistry Advances, 2016, 6(82): 78457–78467

DOI

55
Szili E J, Oh J S, Fukuhara H, Bhatia R, Gaur N, Nguyen C K, Hong S H, Ito S, Ogawa K, Kawada C, et al. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Science & Technology, 2018, 27(1): 14001

DOI

56
Suzen S, Gurer-Orhan H, Saso L. Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique. Molecules (Basel, Switzerland), 2017, 22(1): 181

DOI

57
Takamatsu T, Uehara K, Sasaki Y, Miyahara H, Matsumura Y, Iwasawa A, Ito N, Azuma T, Kohno M, Okino A. Investigation of reactive species using various gas plasmas. Royal Sosiety of Chemistry Advances, 2014, 4(75): 39901–39905

DOI

58
Machala Z, Tarabova B, Hensel K, Spetlikova E, Sikurova L, Lukes P. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Processes and Polymers, 2013, 10(7): 649–659

DOI

59
Jablonowski H, Bussiahn R, Hammer M U, Weltmann K D, Von Woedtke T, Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Physics of Plasmas, 2015, 22(12): 122008

DOI

60
Knake N, Reuter S, Niemi K, Schulz-Von Der Gathen V, Winter J. Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet. Journal of Physics. D, Applied Physics, 2008, 41(19): 194006

DOI

61
Gay-Mimbrera J, Garcia M C, Isla-Tejera B, Rodero-Serrano A, Garcia-Nieto A V, Ruano J. Clinical and biological principles of cold atmospheric plasma application in skin cancer. Advances in Therapy, 2016, 33(6): 894–909

DOI

62
Ratovitski E A, Cheng X, Yan D, Sherman J H, Canady J, Trink B, Keidar M. Anti-cancer therapies of 21st century : Novel approach to treat human cancers using cold atmospheric plasma. Plasma Processes and Polymers, 2014, 11(12): 1128–1137

DOI

63
Hensel K, Kučerová K, Tarabová B, Janda M, Machala Z, Sano K, Mihai C T, Ciorpac M, Gorgan L D, Jijie R, Pohoata V, Topala I. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases, 2015, 10(2): 029515

DOI

64
Keidar M. A prospectus on innovations in the plasma treatment of cancer. Physics of Plasmas, 2018, 25(8): 083504

DOI

Outlines

/