Frontiers of Chemical Science and Engineering >
Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity
Received date: 26 Nov 2010
Accepted date: 10 Apr 2011
Published date: 05 Sep 2011
Copyright
Due to its merits of drought tolerance and high yield, sweet potatoes are widely considered as a potential alterative feedstock for bioethanol production. Very high gravity (VHG) technology is an effective strategy for improving the efficiency of ethanol fermentation from starch materials. However, this technology has rarely been applied to sweet potatoes because of the high viscosity of their liquid mash. To overcome this problem, cellulase was added to reduce the high viscosity, and the optimal dosage and treatment time were 8 U/g (sweet potato powder) and 1 h, respectively. After pretreatment by cellulase, the viscosity of the VHG sweet potato mash (containing 284.2 g/L of carbohydrates) was reduced by 81%. After liquefaction and simultaneous saccharification and fermentation (SSF), the final ethanol concentration reached 15.5% (v/v), and the total sugar conversion and ethanol yields were 96.5% and 87.8%, respectively.
Yinxiu CAO , Hongchi TIAN , Kun YAO , Yingjin YUAN . Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(3) : 318 -324 . DOI: 10.1007/s11705-010-1026-3
1 |
Lynd L R. Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 1996, 21(1): 403-465
|
2 |
Liu S Y, Lin C Y. Development and perspective of promising energy plants for bioethanol production in Taiwan. Renewable Energy, 2009, 34(8): 1902-1907
|
3 |
Worley J W, Vaughan D H, Cundiff J S. Energy analysis of ethanol production from sweet sorghum. Bioresource Technology, 1992, 40(3): 263-273
|
4 |
Lu G Q, Huang H H, Zhang D P. Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality. Journal of Zhejiang University. Science. B., 2006, 7(6): 475-481
|
5 |
Yang J Q. Chinese Patent, 1727491, 2006-<month>20</month>-<day>01</day>
|
6 |
Gong D C, Gong M Z, Li D Y. Chinese Patent, 1966696,2007-<month>05</month>-<day>23</day>
|
7 |
Zhang L A, Chen Q A, Jin Y L, Xue H L, Guan J F, Wang Z Y, Zhao H. Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Processing Technology, 2010, 91(12): 1845-1850
|
8 |
Bayrock D P, Michael I W. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. Journal of Industrial Microbiology & Biotechnology, 2001, 27(2): 87-93
|
9 |
Thomas K C, Hynes S H, Jones A M, Ingledew W M. Production of fuel alcohol from wheat by VHG technology. Applied Biochemistry and Biotechnology, 1993, 43(3): 211-226
|
10 |
Thomas K C, Hynes S H, Ingledew W M. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochemistry, 1996, 31(4): 321-331
|
11 |
Dragone G, Mussatto S I, Silva J B A E. High gravity brewing by continuous process using immobilised yeast: effect of wort original gravity on fermentation performance. JI Brewing, 2007, 113: 391-398
|
12 |
Pereira F B, Guimarães P M R, Teixeira J A, Domingues L. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresource Technology, 2010, 101(20): 7856-7863
|
13 |
Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Bioresource Technology, 2009, 100(18): 4176-4182
|
14 |
Reddy L V. Improvement of ethanol production in very high gravity (VHG) fermentation by black gram (Vigna mungo) flour supplementation. New Biotechnology, 2009, 25: S229-S230
|
15 |
Dragone G, Mussatto S I, Silva J B A. Use of concentrated worts for high gravity brewing by continuous process: new tendencies for the productivity increase. Ciênc Tecnol Aliment, 2007, 27: 37-40
|
16 |
Shen Y, Ge X M, Bai F W. Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions. Applied Microbiology and Biotechnology, 2010, 86(1): 103-108
|
17 |
Pradeep P, Goud G K, Reddy O V S. Optimization of very high gravity (VHG) finger millet (ragi) medium for ethanolic fermentation by yeast. Chiang Mai J Sci, 2010, 37: 116-123
|
18 |
Ingledew W M, Thomas K C, Hynes S H, McLeod J G. Viscosity concerns with rye mashes used for ethanol production. Cereal Chemistry, 1999, 76(3): 459-464
|
19 |
Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R. Grain sorghum is a viable feedstock for ethanol production. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 313-320
|
20 |
Che L M, Wang L J, Li D, Bhandari B, Özkan N, Chen X D, Mao Z H. Starch pastes thinning during high-pressure homogenization. Carbohydrate Polymers, 2009, 75(1): 32-38
|
21 |
Oxenboll Sørensen S, Pauly M, Bush M, Skjøt M, McCann M C, Borkhardt B, Ulvskov P. Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-D-galactanase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(13): 7639-7644
|
22 |
Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates C G. Processing of cassava waste for improved biomass utilization. Bioresource Technology, 2000, 71(1): 63-69
|
23 |
Zhong C, Lau M W, Balan V, Dale B E, Yuan Y J. Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Applied Microbiology and Biotechnology, 2009, 84(4): 667-676
|
24 |
Nitayavardhana S, Rakshit S K, Grewell D, van Leeuwen J H, Khanal S K. Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnology and Bioengineering, 2008, 101(3): 487-496
|
25 |
Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 2006, 28(1): 36-43
|
26 |
Banat I M, Nigam P, Singh D, Marchant R, McHale A P. Ethanol production at elevated temperatures and alcohol concentrations: Part I- Yeasts in general. World Journal of Microbiology and Biotechnology, 1998, 14(6): 809-821
|
27 |
McMillan J D, Newman M M, Templeton D W, Mohagheghi A. Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Applied Biochemistry and Biotechnology, 1999, 79(1-3): 649-665
|
28 |
Liu C L, Zhao Z H. Study on the fermentation technology of high-efficiency environment-protection and energy-saving alcohol. Liquor Making Sci Technol, 2007, 3: 75-77(in Chinese)
|
29 |
Srichuwong S, Fujiwara M, Wang X H, Seyama T, Shiroma R, Arakane M, Mukojima N, Tokuyasu K. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass and Bioenergy, 2009, 33(5): 890-898
|
30 |
Choi G W, Moon S K, Kang H W, Min J, Chung B W. Simultaneous saccharification and fermentation of sludge-containing cassava mash for batch and repeated batch production of bioethanol by Saccharomyces cerevisiae CHFY0321. Journal of Chemical Technology and Biotechnology, 2009, 84(4): 547-553
|
31 |
Choi G W, Kang H W, Kim Y R, Chung B W. Ethanol production by Zymomonas mobilis CHZ2501 from industrial starch feedstocks. Biotechnology and Bioprocess Engineering, 2008, 13(6): 765-771
|
32 |
Wu S H, Jiang C D, Yi Y, Huang C J, Xu Y F, Tong Z F. Optimize conditions of liquefaction for producing manioc alcohol by high-gravity fermentation. Food Science, 2007, 28(10): 381-383(in Chinese)
|
33 |
Rathore S S S, Paulsen M R, Sharma V, Singh V. Optimization of yeast and enzyme dose for dry-grind corn fermentation process for ethanol production. Transactions of the ASABE, 2009, 52: 867-875
|
34 |
Srichuwong S, Arakane M, Fujiwara M, Zhang Z L, Takahashi H, Tokuyasu K. Alkali-aided enzymatic viscosity reduction of sugar beet mash for novel bioethanol production process. Biomass and Bioenergy, 2010, 34(9): 1336-1341
|
/
〈 | 〉 |