Frontiers of Chemical Science and Engineering >
Modeling nanostructured catalyst layer in PEMFC and catalyst utilization
Received date: 20 Jan 2011
Accepted date: 26 Apr 2011
Published date: 05 Sep 2011
Copyright
A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.
Jiejing ZHANG , Pengzhen CAO , Li XU , Yuxin WANG . Modeling nanostructured catalyst layer in PEMFC and catalyst utilization[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(3) : 297 -302 . DOI: 10.1007/s11705-011-1201-1
1 |
Sun W, Peppley B A, Karan K. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochimica Acta, 2005, 50(16-17): 3359–3374
|
2 |
Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 2001, 46(6): 799–805
|
3 |
Uchida M, Aoyama Y, Eda N, Ohta A. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1995, 142(12): 4143–4149
|
4 |
Yoon Y G, Park G G, Yang T H, Han J N, Lee W Y, Kim C S. Effect of pore structure of catalyst layer in a PEMFC on its performance. International Journal of Hydrogen Energy, 2003, 28(6): 657–662
|
5 |
Fischer A, Jindra J, Wendt H. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. Journal of Applied Electrochemistry, 1998, 28(3): 277–282
|
6 |
Caillard A, Charles C, Ramdutt D, Boswell R, Brault P. Effect of Nafion and platinum content in a catalyst layer processed in a radio frequency helicon plasma system. Journal of Physics. D, Applied Physics, 2009, 42(4): 045207
|
7 |
Chisaka M, Matsuoka E, Daiguji H. Effect of organic solvents on the pore structure of catalyst layers in polymer electrolyte membrane fuel cells. Journal of the Electrochemical Society, 2010, 157(8): B1218–B1221
|
8 |
Navessin T, Eikerling M, Wang Q, Song D, Liu Z, Horsfall J, Lovell K V, Holdcroft S. Influence of membrane ion exchange capacity on the catalyst layer performance in an operating PEM fuel cell. Journal of the Electrochemical Society, 2005, 152(4): A796–A805
|
9 |
Chaparro A M, Folgado M A, Ferreira-Aparicio P, Martin A J, Alonso-Álvarez I, Daza L. Properties of catalyst layers for PEMFC electrodes prepared by electrospray deposition. Journal of the Electrochemical Society, 2010, 157(7): B993–B999
|
10 |
Wei Z D, Ran H B, Liu X A, Liu Y, Sun C X, Chan S H, Shen P K. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model. Electrochimica Acta, 2006, 51(15): 3091–3096
|
11 |
Mukherjee P P, Wang C Y. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. Journal of the Electrochemical Society, 2006, 153(5): A840–A849
|
12 |
Wang G, Mukherjee P P, Wang C Y. Direct numerical simulation (DNS) modeling of PEFC electrodes. Part II. Random microstructure. Electrochimica Acta, 2006, 51(15): 3151–3160
|
13 |
Wang H X, Cao P Z, Wang Y X. Monte Carlo simulation of the PEMFC catalyst layer. Frontiers of Chemical Engineering in China, 2007, 1(2): 146–150
|
14 |
Kim S H, Pitsch H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. Journal of the Electrochemical Society, 2009, 156(6): B673–B681
|
15 |
Lange K J, Sui P C, Djilali N. Pore scale simulation of transport and electrochemical reactions in reconstructed PEMFC catalyst layers. Journal of the Electrochemical Society, 2010, 157(10): B1434–B1442
|
16 |
Larminie J, Dicks A. Fuel Cell Systems Explained. 2nd ed.United States: Wiley, 2003, 7
|
17 |
Cao P Z. Simulations of the PEMFC Catalyst Layer by Monte Carlo Method. Dissertation for the Master’s Degree.Tianjin: Tianjin University, 2007, 38 (in Chinese)
|
18 |
Uchida M, Aoyama Y, Eda N, Ohta A. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate lonomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1995, 142(12): 4143–4149
|
19 |
Litster S, McLean G. PEM fuel cell electrodes. Journal of Power Sources, 2004, 130(1-2): 61–76
|
20 |
Paganin V A, Ticianelli E A, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996, 26(3): 297–304
|
21 |
E-TEK Inc. Gas Diffusion Electrodes and Catalyst Materials. Catalogue, 1995, 19
|
/
〈 | 〉 |