REVIEW ARTICLE

Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers

  • Ulrich LÄCHELT ,
  • Ernst WAGNER
Expand
  • Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany

Received date: 18 Mar 2011

Accepted date: 20 May 2011

Published date: 05 Sep 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Polymer-based conjugates are an interesting option and challenge for the design of nano-sized drug-delivery systems, as they require advanced conjugation chemistry and precise engineering. In the case of nucleic acid therapy, non-viral carriers face several biological barriers during the delivery process, namely 1) protection of the cargo from extracellular degradation, 2) avoidance of non-specific interactions with non-targeted tissues, 3) efficient entry into the target cells, 4) intracellular trafficking to the site of action and 5) cargo release. To take on these obstacles, multifunctional conjugates can act as “smart polymers” with microenvironment-sensing dynamics to facilitate the separate delivery steps. Synthesis of defined polymer architectures with precise functionalization enables structure-activity relationships to be investigated and the integration of key functions for efficient delivery. Thus bioresponsive polymer conjugates, which are equipped with molecular devices responding to the certain microenvironments within the delivery pathway (e.g. pH, redox potential, enzymes) can be assembled. This review focuses on the modular engineering and conjugation of multifunctional polymeric structures for the utilization as “tailor-made” nucleic acid carriers.

Cite this article

Ulrich LÄCHELT , Ernst WAGNER . Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(3) : 275 -286 . DOI: 10.1007/s11705-011-1203-z

Acknowledgment

We thank our secretary Mrs. Olga Brück (LMU Munich) for her skillful assistance in preparing the manuscript. Our work related to the topic of this review is supported by the DFG excellence cluster Nanosystems Initiative Munich (NIM), a grant by Roche Kulmbach, and the Munich Biotech Cluster m4 T12.
1
Famulok M, Ackermann D. RNA nanotechnology: inspired by DNA. Nature Nanotechnology, 2010, 5(9): 634–635

DOI

2
Guo P. The emerging field of RNA nanotechnology. Nature Nanotechnology, 2010, 5(12): 833–842

DOI

3
Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Medicine, 2006, 3(1): e6

DOI

4
Schaffert D, Kiss M, Rödl W, Shir A, Levitzki A, Ogris M, Wagner E. Poly(I:C)-mediated tumor growth suppression in EGF-receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharmaceutical Research, 2011, 28(4): 731–741

DOI

5
Shir A, Ogris M, Roedl W, Wagner E, Levitzki A. EGFR-homing dsRNA activates cancer-targeted immune response and eliminates disseminated EGFR-overexpressing tumors in mice. Clinical Cancer Research, 2011, 17(5): 1033–1043

DOI

6
Venkataraman S, Dirks R M, Ueda C T, Pierce N A. Selective cell death mediated by small conditional RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(39): 16777–16782

DOI

7
Ulrich H, Trujillo C A, Nery A A, Alves J M, Majumder P, Resende R R, Martins A H. DNA and RNA aptamers: from tools for basic research towards therapeutic applications. Combinatorial Chemistry & High Throughput Screening, 2006, 9(8): 619–632

DOI

8
Gutsaeva D R, Parkerson J B, Yerigenahally S D, Kurz J C, Schaub R G, Ikuta T, Head C A. Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood, 2011, 117(2): 727–735

DOI

9
Sassanfar M, Szostak J W. An RNA motif that binds ATP. Nature, 1993, 364(6437): 550–553

DOI

10
Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822

DOI

11
Maasch C, Vater A, Buchner K, Purschke W G, Eulberg D, Vonhoff S, Klussmann S. Polyetheylenimine-polyplexes of Spiegelmer NOX-A50 directed against intracellular high mobility group protein A1 (HMGA1) reduce tumor growth in vivo. The Journal of Biological Chemistry, 2010, 285(51): 40012–40018

DOI

12
Dua P, Kim S, Lee D K. Nucleic acid aptamers targeting cell-surface proteins. Methods (San Diego, Calif.), 2011

DOI

13
Keefe A D, Pai S, Ellington A. Aptamers as therapeutics. Nature Reviews. Drug Discovery, 2010, 9(7): 537–550

DOI

14
Li S D, Huang L. Non-viral is superior to viral gene delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2007, 123(3): 181–183

15
Tamura A, Nagasaki Y. Smart siRNA delivery systems based on polymeric nanoassemblies and nanoparticles. Nanomedicine (Lond), 2010, 5(7): 1089–1102

DOI

16
Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes J C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik e.V, 2004, 57(1): 1–8

17
Behr J P. The proton sponge: A trick to enter cells the viruses did not exploit. Chimia, 1997, 51(1–2): 34–36

18
Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. The Journal of Gene Medicine, 2001, 3(2): 135–144

DOI

19
von Harpe A, Petersen H, Li Y, Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of Controlled Release : Official Journal of the Controlled Release Society, 2000, 69(2): 309–322

20
Werth S, Urban-Klein B, Dai L, Höbel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2006, 112(2): 257–270

21
Cherng J Y, van de Wetering P, Talsma H, Crommelin D J A, Hennink W E. Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharmaceutical Research, 1996, 13(7): 1038–1042

DOI

22
van de Wetering P, Cherng J Y, Talsma H, Hennink W E. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. Journal of Controlled Release, 1997, 49(1): 59–69

DOI

23
van de Wetering P, Cherng J Y, Talsma H, Crommelin D J, Hennink W E. 2-(Dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. Journal of Controlled Release: Official Journal of the Controlled Release Society, 1998, 53(1–3): 145–153

24
Xu F J, Li H, Li J, Zhang Z, Kang E T, Neoh K G. Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials, 2008, 29(20): 3023–3033

DOI

25
Krämer M, Stumbé J F, Grimm G, Kaufmann B, Krüger U, Weber M, Haag R. Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chembiochem : a European Journal of Chemical Biology, 2004, 5(8): 1081–1087

26
Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 2001, 6(8): 427–436

DOI

27
Hartmann L. Polymers for control freaks: sequence-defined poly(amidoamine)s and their biomedical applications. Macromolecular Chemistry and Physics, 2011, 212(1): 8–13

DOI

28
Hartmann L, Krause E, Antonietti M, Börner H G. Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules, 2006, 7(4): 1239–1244

DOI

29
Hartmann L, Häfele S, Peschka-Süss R, Antonietti M, Börner H G. Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chemistry, 2008, 14(7): 2025–2033

DOI

30
Schaffert D, Badgujar N, Wagner E. Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Organic Letters, 2011, 13(7): 1586–1589

DOI

31
Burke R S, Pun S H. Extracellular barriers to in vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconjugate Chemistry, 2008, 19(3): 693–704

DOI

32
Edinger D, Wagner E. Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2011, 3(1): 33–46

DOI

33
Itaka K, Harada A, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K. In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. The Journal of Gene Medicine, 2004, 6(1): 76–84

DOI

34
Oupický D, Parker A L, Seymour L W. Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. Journal of the American Chemical Society, 2002, 124(1): 8–9

DOI

35
Neu M, Germershaus O, Mao S, Voigt K H, Behe M, Kissel T. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2007, 118(3): 370–380

36
Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H, Kataoka K. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. Journal of the American Chemical Society, 2004, 126(8): 2355–2361

DOI

37
Russ V, Fröhlich T, Li Y, Halama A, Ogris M, Wagner E. Improved in vivo gene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimine-based polyplexes. The journal of gene medicine, 2010, 12(2): 180–193

38
Hamidi M, Azadi A, Rafiei P. Pharmacokinetic consequences of pegylation. Drug Delivery, 2006, 13(6): 399–409

DOI

39
Itaka K, Yamauchi K, Harada A, Nakamura K, Kawaguchi H, Kataoka K. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials, 2003, 24(24): 4495–4506

DOI

40
Venkataraman S, Ong W L, Ong Z Y, Joachim Loo S C, Ee P L, Yang Y Y. The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationicβpolymers. Biomaterials, 2011, 32(9): 2369–2378

DOI

41
Lai T C, Bae Y, Yoshida T, Kataoka K, Kwon G S. pH-sensitive multi-PEGylated block copolymer as a bioresponsive pDNA delivery vector. Pharmaceutical Research, 2010, 27(11): 2260–2273

DOI

42
Tamura A, Oishi M, Nagasaki Y. Enhanced cytoplasmic delivery of siRNA using a stabilized polyion complex based on PEGylated nanogels with a cross-linked polyamine structure. Biomacromolecules, 2009, 10(7): 1818–1827

DOI

43
Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E. Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA-polymer conjugate. Molecular Pharmaceutics, 2009, 6(3): 752–762

DOI

44
Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, Yamasaki Y, Koyama H, Kataoka K. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. Journal of the American Chemical Society, 2008, 130(18): 6001–6009

DOI

45
Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 2011, 63(3): 152–160

DOI

46
Dash P R, Read M L, Fisher K D, Howard K A, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour L W. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin.The Journal of Biological Chemistry, 2000, 275(6): 3793–3802

DOI

47
Oupicky D, Ogris M, Howard K A, Dash P R, Ulbrich K, Seymour L W. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2002, 5(4): 463–472

48
Ito T, Yoshihara C, Hamada K, Koyama Y. DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice. Biomaterials, 2010, 31(10): 2912–2918

DOI

49
Hornof M, de la Fuente M, Hallikainen M, Tammi R H, Urtti A. Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. The Journal of Gene Medicine, 2008, 10(1): 70–80

DOI

50
Kircheis R, Wightman L, Schreiber A, Robitza B, Rössler V, Kursa M, Wagner E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Therapy, 2001, 8(1): 28–40

DOI

51
Kircheis R, Schüller S, Brunner S, Ogris M, Heider K H, Zauner W, Wagner E. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. Journal of Gene Medicine, 1999, 1(2): 111–120

DOI

52
Li S D, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Molecular Therapy, 2008, 16(5): 942–946

DOI

53
Li S D, Huang L. Surface-modified LPD nanoparticles for tumor targeting. Annals of the New York Academy of Sciences, 2006, 1082(1): 1–8

DOI

54
Hong M S, Lim S J, Oh Y K, Kim C K. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. Journal of Pharmacy and Pharmacology, 2002, 54(1): 51–58

DOI

55
Miller C R, Bondurant B, McLean S D, McGovern K A, O’Brien D F. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry, 1998, 37(37): 12875–12883

DOI

56
O’Riordan C R, Lachapelle A, Delgado C, Parkes V, Wadsworth S C, Smith A E, Francis G E. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Human Gene Therapy, 1999, 10(8): 1349–1358

DOI

57
Croyle M A, Yu Q C, Wilson J M. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Human Gene Therapy, 2000, 11(12): 1713–1722

DOI

58
Wolfert M A, Schacht E H, Toncheva V, Ulbrich K, Nazarova O, Seymour L W. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Human Gene Therapy, 1996, 7(17): 2123–2133

DOI

59
Erbacher P, Bettinger T, Belguise-Valladier P, Zou S, Coll J L, Behr J P, Remy J S. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). Journal of Gene Medicine, 1999, 1(3): 210–222

DOI

60
Kursa M, Walker G F, Roessler V, Ogris M, Roedl W, Kircheis R, Wagner E. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjugate Chemistry, 2003, 14(1): 222–231

DOI

61
Kasper J C, Schaffert D, Ogris M, Wagner E, Friess W. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability–A step closer from promising technology to application. Journal of Controlled Release, 2011, 151(3): 246–255

DOI

62
Kasper J C, Schaffert D, Ogris M, Wagner E, Friess W. The establishment of an up-scaled micro-mixer method allows the standardized and reproducible preparation of well-defined plasmid/LPEI polyplexes. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(1): 182–185

DOI

63
Zhang X, Pan S R, Hu H M, Wu G F, Feng M, Zhang W, Luo X. Poly(ethylene glycol)-block-polyethylenimine copolymers as carriers for gene delivery: effects of PEG molecular weight and PEGylation degree. Journal of Biomedical Materials Research. Part A, 2008, 84A(3): 795–804

DOI

64
Walker G F, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Molecular Therapy, 2005, 11(3): 418–425

DOI

65
Fella C, Walker G F, Ogris M, Wagner E. Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. European Journal of Pharmaceutical Sciences, 2008, 34(4–5): 309–320

DOI

66
Knorr V, Ogris M, Wagner E. An acid sensitive ketal-based polyethylene glycol-oligoethylenimine copolymer mediates improved transfection efficiency at reduced toxicity. Pharmaceutical Research, 2008, 25(12): 2937–2945

DOI

67
Knorr V, Allmendinger L, Walker G F, Paintner F F, Wagner E. An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjugate Chemistry, 2007, 18(4): 1218–1225

DOI

68
Li W, Huang Z, MacKay J A, Grube S, Szoka F C Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. The Journal of Gene Medicine, 2005, 7(1): 67–79

DOI

69
Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, Ueno M, Kobayashi H, Kikuchi H, Harashima H. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Therapy, 2007, 14(1): 68–77

DOI

70
Ikeda Y, Taira K. Ligand-targeted delivery of therapeutic siRNA. Pharmaceutical Research, 2006, 23(8): 1631–1640

DOI

71
Thurnher M, Wagner E, Clausen H, Mechtler K, Rusconi S, Dinter A, Birnstiel M L, Berger E G, Cotten M. Carbohydrate receptor-mediated gene transfer to human T leukaemic cells. Glycobiology, 1994, 4(4): 429–435

DOI

72
Spänkuch B, Steinhauser I, Wartlick H, Kurunci-Csacsko E, Strebhardt K I, Langer K. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia (New York, N.Y.), 2008, 10(3): 223–234

73
Saul J M, Annapragada A V, Bellamkonda R V. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. Journal of Controlled Release, 2006, 114(3): 277–287

DOI

74
Moffatt S, Papasakelariou C, Wiehle S, Cristiano R. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Therapy, 2006, 13(9): 761–772

DOI

75
de Bruin K, Ruthardt N, von Gersdorff K, Bausinger R, Wagner E, Ogris M, Bräuchle C. Cellular dynamics of EGF receptor-targeted synthetic viruses. Molecular Therapy, 2007, 15(7): 1297–1305

DOI

76
Wolschek M F, Thallinger C, Kursa M, Rössler V, Allen M, Lichtenberger C, Kircheis R, Lucas T, Willheim M, Reinisch W, Gangl A, Wagner E, Jansen B. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology (Baltimore, Md.), 2002, 36(5): 1106–1114

DOI

77
Elfinger M, Pfeifer C, Uezguen S, Golas M M, Sander B, Maucksch C, Stark H, Aneja M K, Rudolph C. Self-assembly of ternary insulin-polyethylenimine (PEI)-DNA nanoparticles for enhanced gene delivery and expression in alveolar epithelial cells. Biomacromolecules, 2009, 10(10): 2912–2920

DOI

78
Furgeson D Y, Chan W S, Yockman J W, Kim S W. Modified linear polyethylenimine-cholesterol conjugates for DNA complexation. Bioconjugate Chemistry, 2003, 14(4): 840–847

DOI

79
Thomas M, Kularatne S A, Qi L, Kleindl P, Leamon C P, Hansen M J, Low P S. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues. Annals of the New York Academy of Sciences, 2009, 1175(1): 32–39

DOI

80
Xia W, Low P S. Folate-targeted therapies for cancer. Journal of Medicinal Chemistry, 2010, 53(19): 6811–6824

DOI

81
Wang S, Lee R J, Cauchon G, Gorenstein D G, Low P S.Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci USA, 1995, 92(0027–8424): 3318–3322

82
Kularatne S A, Low P S. Targeting of nanoparticles: folate receptor. Methods in Molecular Biology (Clifton, N.J.), 2010, 624: 249–265

DOI

83
Zhang K, Wang Q, Xie Y, Mor G, Sega E, Low P S, Huang Y. Receptor-mediated delivery of siRNAs by tethered nucleic acid base-paired interactions. RNA (New York), 2008, 14(3): 577–583

84
Elfinger M, Geiger J, Hasenpusch G, Uzgün S, Sieverling N, Aneja M K, Maucksch C, Rudolph C. Targeting of the beta(2)-adrenoceptor increases nonviral gene delivery to pulmonary epithelial cells in vitro and lungs in vivo. Journal of Controlled Release, 2009, 135(3): 234–241

DOI

85
Geiger J, Aneja M K, Hasenpusch G, Yüksekdag G, Kummerlöwe G, Luy B, Romer T, Rothbauer U, Rudolph C. Targeting of the prostacyclin specific IP1 receptor in lungs with molecular conjugates comprising prostaglandin I2 analogues. Biomaterials, 2010, 31(10): 2903–2911

DOI

86
Li S D, Chen Y C, Hackett M J, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Molecular Therapy, 2008, 16(1): 163–169

DOI

87
Li S D, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Molecular Pharmaceutics, 2006, 3(5): 579–588

DOI

88
Oishi M, Kataoka K, Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjugate Chemistry, 2006, 17(3): 677–688

DOI

89
Oishi M, Nagatsugi F, Sasaki S, Nagasaki Y, Kataoka K. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. ChemBioChem, 2005, 6(4): 718–725

DOI

90
Zauner W, Ogris M, Wagner E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews, 1998, 30(1–3): 97–113

DOI

91
Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H, Kataoka K. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing alphavbeta3 and alphavbeta5 integrins. Bioconjugate Chemistry, 2007, 18(5): 1415–1423

DOI

92
Taratula O, Garbuzenko O B, Kirkpatrick P, Pandya I, Savla R, Pozharov V P, He H, Minko T. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release, 2009, 140(3): 284–293

DOI

93
Han L, Huang R, Li J, Liu S, Huang S, Jiang C. Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials, 2011, 32(4): 1242–1252

DOI

94
Klutz K, Schaffert D, Willhauck M J, Grünwald G K, Haase R, Wunderlich N, Zach C, Gildehaus F J, Senekowitsch-Schmidtke R, Göke B, Wagner E, Ogris M, Spitzweg C. Epidermal growth factor receptor-targeted (131)I-therapy of liver cancer following systemic delivery of the sodium iodide symporter gene. Molecular Therapy, 2011, 19(4): 676–685

DOI

95
Herbst R S. Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology, Biology, Physics, 2004, 59(2, Suppl): S21–S26

DOI

96
Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. The FASEB Journal, 2005, 19(14): 1978–1985

DOI

97
Leamon C P, Low P S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today, 2001, 6(1): 44–51

DOI

98
Ross J F, Chaudhuri P K, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 1994, 73(9): 2432–2443

DOI

99
Hwa Kim S, Hoon Jeong J, Chul Cho K, Wan Kim S, Gwan Park T. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). Journal of Controlled Release, 2005, 104(1): 223–232

DOI

100
Bellocq N C, Pun S H, Jensen G S, Davis M E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjugate Chemistry, 2003, 14(6): 1122–1132

DOI

101
Thorstensen K, Romslo I. The transferrin receptor: its diagnostic value and its potential as therapeutic target. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 1993, 53(s215): 113–120

DOI

102
Gatter K C, Brown G, Trowbridge I S, Woolston R E, Mason D Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. Journal of Clinical Pathology, 1983, 36(5): 539–545

DOI

103
Davis M E, Zuckerman J E, Choi C H, Seligson D, Tolcher A, Alabi C A, Yen Y, Heidel J D, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291): 1067–1070

DOI

104
Davis M E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Molecular Pharmaceutics, 2009, 6(3): 659–668

DOI

105
Quan C Y, Chang C, Wei H, Chen C S, Xu X D, Cheng S X, Zhang X Z, Zhuo R X. Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release. Nanotechnology, 2009, 20(33): 335101

DOI

106
Kakimoto S, Moriyama T, Tanabe T, Shinkai S, Nagasaki T. Dual-ligand effect of transferrin and transforming growth factor alpha on polyethyleneimine-mediated gene delivery. Journal of Controlled Release, 2007, 120(3): 242–249

DOI

107
Wagner E, Cotten M, Foisner R, Birnstiel M L. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(10): 4255–4259

DOI

108
Han L, Huang R, Liu S, Huang S, Jiang C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Molecular Pharmaceutics, 2010, 7(6): 2156–2165

DOI

109
Xia H, Anderson B, Mao Q, Davidson B L. Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. Journal of Virology, 2000, 74(23): 11359–11366

DOI

110
Li D, Tang G P, Li J Z, Kong Y, Huang H L, Min L J, Zhou J, Shen F P, Wang Q Q, Yu H. Dual-targeting non-viral vector based on polyethylenimine improves gene transfer efficiency. Journal of Biomaterials Science. Polymer Edition, 2007, 18(5): 545–560

DOI

111
Suh W, Han S O, Yu L, Kim S W. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Molecular Therapy, 2002, 6(5): 664–672

DOI

112
Bai M, Campisi L, Freimuth P. Vitronectin receptor antibodies inhibit infection of HeLa and A549 cells by adenovirus type 12 but not by adenovirus type 2. Journal of Virology, 1994, 68(9): 5925–5932

113
Nie Y, Schaffert D, Rödl W, Ogris M, Wagner E, Günther M. Dual-targeted polyplexes: One step towards a synthetic virus for cancer gene therapy. Journal of Controlled Release, 2011, DOI: 10.1016/j.jconrel.2011.02.028

DOI

114
Wagner E. Effects of membrane-active agents in gene delivery. Journal of Controlled Release, 1998, 53(1–3): 155–158

DOI

115
Curiel D T, Agarwal S, Wagner E, Cotten M. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(19): 8850–8854

DOI

116
Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. Journal of the American Chemical Society, 2008, 130(11): 3272–3273

DOI

117
Meyer M, Zintchenko A, Ogris M, Wagner E. A dimethylmaleic acid-melittin-polylysine conjugate with reduced toxicity, pH-triggered endosomolytic activity and enhanced gene transfer potential. The Journal of Gene Medicine, 2007, 9(9): 797–805

DOI

118
Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel M L. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(17): 7934–7938

DOI

119
Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjugate Chemistry, 1992, 3(6): 533–539

DOI

120
Roy R, Jerry D J, Thayumanavan S. Virus-inspired approach to nonviral gene delivery vehicles. Biomacromolecules, 2009, 10(8): 2189–2193

DOI

121
Wang H, Liu K, Chen K J, Lu Y, Wang S, Lin W Y, Guo F, Kamei K, Chen Y C, Ohashi M, Wang M, Garcia M A, Zhao X Z, Shen C K, Tseng H R. A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. ACS Nano, 2010, 4(10): 6235–6243

DOI

122
Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release, 2005, 109(1–3): 299–316

DOI

123
Pun S H, Bellocq N C, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis M E. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chemistry, 2004, 15(4): 831–840

DOI

124
Sletten E M, Bertozzi C R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angewandte Chemie (International ed. in English), 2009, 48(38): 6974–6998

DOI

125
Navath R S, Menjoge A R, Wang B, Romero R, Kannan S, Kannan R M. Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications. Biomacromolecules, 2010, 11(6): 1544–1563

DOI

Outlines

/