RESEARCH ARTICLE

Atomistic simulations for adsorption and separation of flue gas in MFI zeolite and MFI/MCM-41 micro/mesoporous composite

  • Shengchi ZHUO ,
  • Yongmin HUANG ,
  • Jun HU ,
  • Honglai LIU
Expand
  • State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China

Received date: 28 Mar 2010

Accepted date: 21 May 2010

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Adsorption of pure CO2 and N2 and separation of CO2/N2 mixture in MFI zeolite and MFI/MCM-41 micro/mesoporous composite have been studied by using atomistic simulations. Fully atomistic models of MFI and MFI/MCM-41 are constructed and characterized. A bimodal pore size distribution is observed in MFI/MCM-41 from simulated small- and broad-angle X-ray diffraction patterns. The density of MFI/MCM-41 is lower than MFI, while its free volume and specific surface area are greater than MFI due to the presence of mesopores. CO2 is preferentially adsorbed than N2, and thus, the loading and isosteric heat of CO2 are greater than N2 in both MFI and MFI/MCM-41. CO2 isotherm in MFI/MCM-41 is similar to that in MFI at low pressures, but resembles that in MCM-41 at high pressures. N2 shows similar amount of loading in MFI, MCM-41 and MFI/MCM-41. The selectivity of CO2 over N2 in the three adsorbents decreases in the order of MFI>MFI/MCM-41>MCM-41. With increasing pressure, the selectivity increases in MFI and MFI/MCM-41, but decreases in MCM-41. The self-diffusivity of CO2 and N2 in MFI decreases as loading increases, while in MFI/MCM-41, it first increases and then drops.

Cite this article

Shengchi ZHUO , Yongmin HUANG , Jun HU , Honglai LIU . Atomistic simulations for adsorption and separation of flue gas in MFI zeolite and MFI/MCM-41 micro/mesoporous composite[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(2) : 264 -273 . DOI: 10.1007/s11705-010-1007-6

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 20736002, 20776045), the National High Technology Research and Development Program of China (No. 2008AA062302), Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0721) and the 111 Project of China (No. B08021).
1
AaronD, TsourisC. Separation of CO2 from flue gas: a review. Separation Science and Technology, 2005, 40(1): 321–348

DOI

2
WhiteC M, SmithD H, JonesK L, GoodmanA L, JikichS A, LaCountR B, DuBoseS B, OzdemirE, MorsiB I, SchroederK T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: a review. Energy & Fuels, 2005, 19(3): 659–724

DOI

3
HoM T, LeamonG, AllinsonG W, WileyD E. Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes. Industrial & Engineering Chemistry Research, 2006, 45(8): 2546–2552

DOI

4
AudusH. Greenhouse gas mitigation technology: an overview of the CO2 capture and sequestration studies and further activities of the IEA greenhouse gas R&D programme. Energy, 1997, 22(2-3): 217–221

5
LeeK B, SircarS. Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(9): 2293–2302

DOI

6
LiX N, HagamanE, TsourisC, LeeJ W. Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase. Energy & Fuels, 2003, 17(1): 69–74

DOI

7
GöttlicherG, PruschekR. Comparison of CO2 removal systems for fossil-fuel power plant processes. Energy Conversion and Management, 1997, 38(Suppl): S173–S178

8
KovvaliA S, SirkarK K. Carbon dioxide separation with novel solvents as liquid membranes. Industrial & Engineering Chemistry Research, 2002, 41(9): 2287–2295

DOI

9
HoM T, AllinsonG W, WileyD E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Industrial & Engineering Chemistry Research, 2008, 47(14): 4883–4890

DOI

10
MeisenA, ShuaiX. Research and development issues in CO2 capture. Energy Conversion and Management, 1997, 38(Suppl): S37–S42

11
RiemerP, WebsterI, OmerodW, AudusH. Results and full fuel cycle study plans from the IEA greenhouse gas research and development programme. Fuel, 1994, 73(7): 1151–1158

DOI

12
SatyapalS, FilburnT, TrelaJ, StrangeJ. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy & Fuels, 2001, 15(2): 250–255

DOI

13
PruschekR, OeljeklausG, HauptG, ZimmermannG, JansenD, RibberinkJ S. The role of IGCC in CO2 abatement. Energy Conversion and Management, 1997, 38(Suppl): S153–S158

14
GrandeC A, RodriguesA E. Electric swing adsorption for CO2 removal from flue gases. International Journal of Greenhouse Gas Control, 2008, 2: 194–202

15
García-PírezE, ParraJ B, AniaC O, García-SánchezA, BatenJ M V, KrishnaR, DubbeldamD, CaleroS. A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption, 2007, 13(5-6): 469–476

16
KrishnaR, van BatenJ M. Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures. Chemical Engineering Journal, 2007, 133(1-3): 121–131

17
HeY F, SeatonN A. Heats of adsorption and adsorption heterogeneity for methane, ethane, and carbon dioxide in MCM-41. Langmuir, 2006, 22(3): 1150–1155

DOI

18
HarlickP J E, SayariA. Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Industrial & Engineering Chemistry Research, 2007, 46(2): 446–458

DOI

19
YangQ Y, XueC Y, ZhongC L, ChenJ F. Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(11): 2832–2840

DOI

20
BabaraoR, HuZ Q, JiangJ W, ChempathS, SandlerS I. Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir, 2007, 23(2): 659–666

DOI

21
BabaraoR, JiangJ W. Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from molecular dynamics simulation. Langmuir, 2008, 24(10): 5474–5484

DOI

22
KresgeC T, LeonowiczM E, RothW J, VartuliJ C, BeckJ S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710–712

DOI

23
BeckJ S, VartuliJ C, RothW J, LeonowiczM E, KresgeC T, SchmittK D, ChuC T W, OlsonD H, SheppardE W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843

DOI

24
HarlickP J E, SayariA. Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research, 2006, 45(9): 3248–3255

DOI

25
HiyoshiN, YogoK, YashimaT. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters, 2004, 33(5): 510–511

DOI

26
ZhengF, TranD N, BuscheB J, FryxellG E, AddlemanR S, ZemanianT S, AardahlC L. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Industrial & Engineering Chemistry Research, 2005, 44(9): 3099–3105

DOI

27
ZhuoS C, HuangY M, HuJ, LiuH L, HuY, JiangJ W. Computer simulation for adsorption of CO2, N2 and flue gas in a mimetic MCM-41. Journal of Physical Chemistry C, 2008, 112(30): 11295–11300

DOI

28
MaddoxM W, OlivierJ P, GubbinsK E. Characterization of MCM-41 using molecular simulation: heterogeneity effects. Langmuir, 1997, 13(6): 1737–1745

DOI

29
KohC A, MontanariT, NooneyR I, TahirS F, WestacottR E. Experimental and computer simulation studies of the removal of carbon dioxide from mixtures with methane using AlPO4–5 and MCM-41. Langmuir, 1999, 15(18): 6043–6049

DOI

30
HeY F, SeatonN A. Experimental and computer simulation studies of the adsorption of ethane, carbon dioxide, and their binary mixtures in MCM-41. Langmuir, 2003, 19(24): 10132–10138

DOI

31
CoasneB, HungF R, PellenqR J M, SipersteinF R, GubbinsK E. Adsorption of simple gases in MCM-41 materials: the role of surface roughness. Langmuir, 2006, 22(1): 194–202

DOI

32
GalarneauA, NaderM, GuenneauF, DiRenzoF, GedeonA. Understanding the stability in water of mesoporous SBA-15 and MCM-41. Journal of Physical Chemistry C, 2007, 111(23): 8268–8277

DOI

33
DelgadoJ A, UguinaM A, GómezJ M, OrtegaG L. Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Separation and Purification Technology, 2006, 48(3): 223–228

DOI

34
SongC M, JiangJ, YanZ F. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite. Journal of Porous Materials, 2008, 15(2): 205–211

DOI

35
KarlssonA, SteockerM, SchmitR. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor Mesopor Mater, 1999, 27(2-3): 181–192

DOI

36
VerhoefM J, KooymanP J, van der WaalJ C, RiguttoM S, PetersJ A, van BekkumH. Partial transformation of MCM-41 material into zeolites: formation of nanosized MFI type crystallites. Chemistry of Materials, 2001, 13(2): 683–687

DOI

37
HuangL M, GuoW P, DengP, XueZ Y, LiQ Z. Investigation of synthesizing MCM-41/ZSM-5 composites. Journal of Physical Chemistry B, 2000, 104(13): 2817–2823

DOI

38
PoladiR H P R, LandryC C. Synthesis, characterization, and catalytic properties of a microporous/mesoporous material, MMM-1. Journal of Solid State Chemistry, 2002, 167(2): 363–369

DOI

39
LiuY, ZhangW Z, PinnavaiaT J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society, 2000, 122(36): 8791–8792

DOI

40
LiuY, ZhangW, PinnavaiaT J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258

DOI

41
LiuY, PinnavaiaT J. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking. Journal of the American Chemical Society, 2003, 125(9): 2376–2377

DOI

42
ZhangZ, HanY, XiaoF S, QiuS, ZhuL, WangR, YuY, ZhangZ, ZouB, WangY, SunH, ZhaoD, WeiY. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. Journal of the American Chemical Society, 2001, 123(21): 5014–5021

DOI

43
ZhangZ, HanY, ZhuL, WangR, YuY, QiuS, ZhaoD, XiaoF S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition, 2001, 40(7): 1258–1262 C

DOI

44
ZhuL, XiaoF S, ZhangZ, SunY, HanY, QiuS. High activity in catalytic cracking over stable mesoporous aluminosilicates. Catalysis Today, 2001, 68(1-3): 209–216

DOI

45
HanY, XiaoF S, WuS, SunY, MengX, LiD, LinS, DengF, AiX. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. Journal of Physical Chemistry B, 2001, 105(33): 7963–7966

DOI

46
HanY, WuS, SunY, LiD, XiaoF S, LiuJ, ZhangX. Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chemistry of Materials, 2002, 14(3): 1144–1148

DOI

47
XuH Y, GuanJ Q, WuS J, KanQ B. Synthesis of Beta/MCM-41 composite molecular sieve with high hydrothermal stability in static and stirred condition. Journal of Colloid and Interface Science, 2009, 329(2): 346–350

DOI

48
HartmannM. Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882

DOI

49
TaoY S, KanohH, AbramsL, KanekoK. Mesopore-modified zeolites: preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910

DOI

50
YueM B, SunL B, ZhuangT T, DongX, ChunY, ZhuJ H. Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. Journal of Materials Chemistry, 2008, 18(17): 2044–2050

DOI

51
SonwaneC G, LiQ. Molecular simulation of RMM: ordered mesoporous SBA-15 type material having microporous ZSM-5 walls. Journal of Physical Chemistry B, 2005, 109(38): 17993–17997

DOI

52
ChenH Y, XiH X, CaiX Y, YuQ. Experimental and molecular simulation studies of a ZSM-5-MCM-41 micro-mesoporous molecular sieve. Microporous and Mesoporous Materials, 2009, 118(1-3): 396–402

53
FlanigenE M, BennettJ M, GroseR W, CohenJ P, PattonR L, KirchnerR M, SmithJ V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271(5645): 512–516

DOI

54
HirotaniA, MizukamiK, MiuraR, TakabaH, MiyaT, FahmiA, StirlingA, KuboM, MiyamotoA. Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5. Applied Surface Science, 1997, 120(1-2): 81–84

DOI

55
GojA, ShollD S, AktenE D, KohenD. Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. Journal of Physical Chemistry B, 2002, 106(33): 8367–8375

DOI

56
HarrisJ G, YungK H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. Journal of Physical Chemistry, 1995, 99(31): 12021–12024

DOI

57
ConnollyM L. Solvent-accessible surfaces of proteins and nucleic acids. Science, 1983, 221(4612): 709–713

DOI

58
ConnollyM L. Analytical molecular surface calculation. Journal of Applied Crystallography, 1983, 16(5): 548–558

DOI

59
JunS, JooS H, RyooR, KrukM, JaroniecM, LiuZ, OhsunaT, TerasakiO. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

DOI

60
WoodsG B, RowlinsonJ S. Computer simulations of fluids in zeolites X and Y. Journal of the Chemical Society. Faraday Transactions II, 1989, 85(6): 765–781

DOI

61
QinY, YangX N, ZhuY F, PingJ L. Molecular dynamics simulation of interaction between supercritical CO2 fluid and modified silicasurfaces. Journal of Physical Chemistry C, 2008, 112(33): 12815–12824

DOI

62
van den BerghJ, BanS, VlugtT J H, KapteijnF. Modeling the loading dependency of diffusion in zeolites: the relevant site model. Journal of Physical Chemistry C, 2009, 113(41): 17840–17850

DOI

Outlines

/