Frontiers of Chemical Science and Engineering >
Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst
Received date: 26 Jan 2018
Accepted date: 17 Apr 2018
Published date: 15 Jun 2019
Copyright
A novel Cu-Mn-Ce/cordierite honeycomb catalyst was prepared by an incipient wetness method and the catalyst was characterized. The active ingredients were present as various spinel species of Cu, Mn and Ce oxides with different valences and they were unevenly dispersed over the surface of the catalyst. The catalytic oxidation of gaseous toluene was primarily investigated using a fixed bed reactor under microwave heating in the continuous flow mode. Under the optimal conditions of 6.7 wt-% loading of the active component, a bed temperature of 200°C, a flow rate of 0.12 m3·h−1 and an initial concentration of toluene of 1000 mg·m−3, the removal and mineralization efficiencies of toluene were 98% and 70%, respectively. Thus the use of the microwave effectively improved the oxidation of toluene and this is attributed to dipole polarization and hotspot effects. After four consecutive cycles (a total of 1980 min), the Cu-Mn-Ce/cordierite catalyst still exhibited excellent catalytic activity and structural stability, and the toluene removal was higher than 90%. This work demonstrates the possibility of treating volatile organic compounds in exhaust gases by microwave-assisted catalytic oxidation.
Key words: microwave; catalytic oxidation; toluene; Cu-Mn-Ce/cordierite; mineralization
Longli Bo , Shaoyuan Sun . Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 385 -392 . DOI: 10.1007/s11705-018-1738-3
1 |
Campagnolo D, Saraga D E, Cattaneo A, Spinazzè A, Mandin C, Mabilia R, Perreca E, Sakellaris I, Canha N, Mihucz V G,
|
2 |
Biasioli F, Yeretzian C, Gasperi F, Märk T D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trends in Analytical Chemistry, 2011, 30(7): 968–977
|
3 |
Cruz M D, Christensen J H, Thomsen J D, Müller R. Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Environmental Science and Pollution Research International, 2014, 21(24): 13909–13928
|
4 |
Zhang C G, Shen J L, Zhang Y X, Huang W W, Zhu X B, Wu X C, Chen L H, Gao X, Cen K F. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection. Atmospheric Environment, 2017, 150: 116–125
|
5 |
Ojala S, Pitkäaho S, Laitinen T, Koivikko N N, Brahmi R, Gaálová J, Matejova L, Kucherov A, Päivärinta S, Hirschmann C,
|
6 |
Lerner J E C, Kohajda T, Aguilar M E, Massolo L A, Sánchez E Y, Porta A A, Opitz P, Wichmann G, Herbarth O, Mueller A. Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environmental Science and Pollution Research International, 2014, 21(16): 9676–9688
|
7 |
Gong Y, Wei Y J, Cheng J H, Jiang T Y, Chen L, Xu B. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages—a case study in Shanghai, China. Science of the Total Environment, 2017, 574: 1432–1438
|
8 |
Nevers N D. Air Pollution Control Engineering. Beijing: Tsinghua University Press, 2000, 329–330
|
9 |
Wang H L, Nie L, Li J, Wang Y F, Wang G, Wang J H, Hao Z P. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Environmental Chemistry, 2013, 58(7): 724–730
|
10 |
Zallouha M A, Landkocz Y, Brunet J, Cousin R, Genty E, Courcot D, Siffert S, Shirali P, Billet S. Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system. Environmental Research, 2017, 152: 328–335
|
11 |
Zhang X Y, Gao B, Creamer A E, Cao C C, Li Y C. Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 2017, 338: 102–123
|
12 |
Malakar S, Saha P D, Baskaran D, Rajamanickam R. Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater—a review. Environmental Technology & Innovation, 2017, 8: 441–461
|
13 |
Kim E H, Chun Y N. VOC decomposition by a plasma-cavity combustor. Chemical Engineering and Processing: Process Intensification, 2016, 104: 51–57
|
14 |
Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmospheric Environment, 2016, 140: 117–134
|
15 |
Tabakova T, Kolentsova E, Dimitrov D, Ivanov K, Manzoli M, Venezia A M, Karakirova Y, Petrova P, Nihtianova D, Avdeev G C O. CO and VOCs catalytic oxidation over alumina supported Cu–Mn catalysts: Effect of Au or Ag deposition. Topics in Catalysis, 2017, 60(1-2): 110–122
|
16 |
Idakiev V, Dimitrov D, Tabakova T, Ivanov K, Yuan Z Y, Su B L. Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015, 36(4): 579–587
|
17 |
Colman-Lerner J E, Peluso M A, Sambeth J E, Thomas H J. Volatile organic compound removal over bentonite-supported Pt, Mn and Pt/Mn monolithic catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108(2): 443–458
|
18 |
Gómez D M, Gatica J M, Hernández-Garrido J C, Cifredo G A, Montes M, Sanz O, Rebled J M, Vidal H. A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Applied Catalysis B: Environmental, 2014, 144: 425–434
|
19 |
Sun J Y, Bo L L, Yang L, Liang X X, Hu X J. A carbon nanodot modified Cu-Mn-Ce/ZSM catalyst for the enhanced microwave-assisted degradation of gaseous toluene. RSC Advances, 2014, 4(28): 14385–14391
|
20 |
Li L D, Zhang F X, Guan N J. Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust. Catalysis Communications, 2008, 9(3): 409–415
|
21 |
El Khaled D, Novas N, Gazquez J A, Manzano-Agugliaro F. Microwave dielectric heating: Applications on metals processing. Renewable & Sustainable Energy Reviews, 2018, 82: 2880–2892
|
22 |
Mishra R R, Sharma A K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 2016, 81: 78–97
|
23 |
Buchelnikov V D, Louzguine-Luzgin D V, Anzulevich A P, Bychkov I V, Yoshikawa N, Sato M, Inoue A. Modeling of microwave heating of metallic powders. Physica B: Condensed Matter, 2008, 403(21–22): 4053–4058
|
24 |
Horikoshi S, Osawa A, Sakamoto S, Serpone N. Control of microwave-generated hot spots. Part V. Mechanisms of hot-spot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates. Applied Catalysis A: General, 2013, 460–461: 52–60
|
25 |
Mukhopadhyay I, Sastry K V L N. Dipole moment of methanol by microwave stark spectroscopy IV: 13C D163. Journal of Molecular Structure, 2015, 1098: 119–123
|
26 |
Bo L L, Liu H N, Wang X H, Zhang H, Sun J Y, Yang L. Study on the catalytic oxidation of toluene under different heating modes. Environmental Chemistry, 2013, 32(8): 1524–1531 (in Chinese)
|
27 |
Bo L L, Yang L, Sun J Y, Liang X X, Hu X J, Meng H L. Catalytic oxidation of two-component VOCs and kinetic analysis. Environmental Sciences, 2014, 35(9): 3302–3308 (in Chinese)
|
28 |
Wang B, Rui M, Xue G C, Zhang L. Research progress on thermal oxidation technology for industrial organic waste gas. Chemical Industry and Engineering Progeress, 2017, 36(11): 4232–4242 (in Chinese)
|
29 |
Bo L L, Liao J B, Zhang Y C, Wang X H, Yang Q. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating. Frontiers of Environmental Science & Engineering, 2013, 7(3): 395–402
|
30 |
Yi H H, Yang Z Y, Tang X H, Zhao S Z, Gao F Y, Wang J G, Huang Y H, Ma Y Q, Chu C, Li Q, Xu J. Promotion of low temperature oxidation of toluene vapor derived from the combination of microwave radiation and nano-size Co3O4. Chemical Engineering Journal, 2018, 333: 554–563
|
31 |
Li F, Shen B X, Tian L H, Li G L, He C. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica. Powder Technology, 2016, 297: 384–391
|
32 |
Sutradhar M, Alegria E C B A, Roy Barman T, Scorcelletti F, Guedes da Silva M F C, Pombeiro A J L. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Molecular Catalysis, 2017, 439: 224–232
|
33 |
Li S, Zhang G S, Wang P, Zheng H S, Zheng Y J. Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 2016, 294: 371–379
|
34 |
Lu H F, Zhou Y, Huang H F, Zhang B, Chen Y F. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion. Journal of Rare Earths, 2011, 29(9): 855–860
|
35 |
Lu H F, Kong X X, Huang H F, Zhou Y, Chen Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. Journal of Environmental Sciences, 2015, 32: 102–107
|
36 |
He C, Yu Y K, Shi J W, Shen Q, Chen J S, Liu H X. Mesostructured Cu-Mn-Ce-O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course. Materials Chemistry and Physics, 2015, 157: 87–100
|
37 |
Morales M R, Agüero F N, Cadus L E. Catalytic combustion of n-hexane over alumina supported Mn-Cu-Ce catalysts. Catalysis Letters, 2013, 143(10): 1003–1011
|
38 |
Ren T Z, Xu P B, Deng Q F, Yuan Z Y. Mesoporous Ce1-xMnxO2 mixed oxides with CuO loading for the catalytic total oxidation of propane. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(2): 405–420
|
/
〈 | 〉 |