Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles
Received date: 16 Apr 2018
Accepted date: 22 Apr 2018
Copyright
The synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE) system has been used to improve prodeoxyviolacein (PDV) production in haploid yeast containing chromosome synV. To rapidly and continuously generate genome diversification with the desired phenotype, the multiplex SCRaMbLE iterative cycle strategy has been developed for the screening of high PDV production strains. Whole-genome sequencing analysis reveals large duplications, deletions, and even the whole genome duplications. The deletion of YER151C is proved to be responsible for the increase. This study demonstrates that artificial DNA rearrangement can be used to accelerate microbial evolution and the production of biobased chemicals.
Juan Wang , Bin Jia , Zexiong Xie , Yunxiang Li , Yingjin Yuan . Improving prodeoxyviolacein production via multiplex SCRaMbLE iterative cycles[J]. Frontiers of Chemical Science and Engineering, 0 . DOI: 10.1007/s11705–018-1739-2
1 |
Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J B, Lindstrom D L,
|
2 |
Yue J X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino M C,
|
3 |
Zhang Q J, Zhu T, Xia E H, Shi C, Liu Y L, Zhang Y, Liu Y, Jiang W K, Zhao Y J, Mao S Y,
|
4 |
Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Research, 2003, 13(1): 37–45
|
5 |
Redon R, Ishikawa S, Fitch K R, Feuk L, George H, Andrews T D, Fiegler H, Shapero M H, Carson A R, Chen W W,
|
6 |
Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, Del Cardayré S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646
|
7 |
Biot-Pelletier D, Martin V J J. Evolutionary engineering by genome shuffling. Applied Microbiology and Biotechnology, 2014, 98(9): 3877–3887
|
8 |
Xie Z X, Li B Z, Mitchell L A, Wu Y, Qi X, Jin Z, Jia B, Wang X, Zeng B X, Liu H M,
|
9 |
Wu Y, Li B Z, Zhao M, Mitchell L A, Xie Z X, Lin Q H, Wang X, Xiao W H, Wang Y, Zhou X,
|
10 |
Durán N, Justo G Z, Durán M, Brocchi M, Cordi L, Tasic L, Castro G R, Nakazato G. Advances in chromobacterium violaceum and properties of violacein–its main secondary metabolite: A review. Biotechnology Advances, 2016, 34(5): 1030–1045
|
11 |
Melo P S, Maria S S, Vidal B C, Haun M, Durán N. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cellular & Developmental Biology, 2000, 36(8): 539–543
|
12 |
Konzen M, De Marco D, Cordova C A S, Vieira T O, Antônio R V, Creczynski-Pasa T B. Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 2006, 14(24): 8307–8313
|
13 |
Durán N, Antonio R V, Haun M, Pilli R A. Biosynthesis of a trypanocide by Chromobacterium violaceum. World Journal of Microbiology & Biotechnology, 1994, 10(6): 686–690
|
14 |
Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine, 2010, 17(3–4): 300–304
|
15 |
Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678
|
16 |
Lin Q, Jia B, Mitchell L A, Luo J C, Yang K, Zeller K I, Zhang W Q, Xu Z W, Stracquadanio G, Bader J S, Boeke J D, Yuan Y J. RADOM, an Efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synthetic Biology, 2014, 4(3): 213–220
|
17 |
Liu D, Liu H, Li B Z, Qi H, Jia B, Zhou X, Du H X, Zhang W, Yuan Y J. Multigene pathway engineering with regulatory linkers (M-PERL). ACS Synthetic Biology, 2016, 5(12): 1535–1545
|
18 |
Knaggs A R. The biosynthesis of shikimate metabolites. Natural Product Reports, 2003, 20(1): 119–136
|
19 |
Zalatan J G, Lee M, Almeida E R, Gilbert L A, Whitehead E H, La Russa M, Tsai J C, Weissman J S, Dueber J E, Qi L S, Lim W A. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 2015, 160(1–2): 339–350
|
20 |
Jia B, Wu Y, Li B Z, Mitchell L A, Liu H, Pan S, Wang J, Zhang H R, Liu H M, Chen Z X,
|
21 |
Querol A, Fernández-Espinar M T, Del Olmo M, Barrio E. Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86(1–2): 3–10
|
22 |
Gatti L, Hoe K L, Hayles J, Righetti S C, Carenini N B, Laura D, Kim D U, Park H O, Perego P. Ubiquitin-proteasome genes as targets for modulation of cisplatin sensitivity in fission yeast. BMC Genomics, 2011, 12(1): 44
|
23 |
Dodgson S E, Santaguida S, Kim S, Sheltzer J, Amon A. The pleiotropic deubiquitinase UBP3 confers aneuploidy tolerance. Genes & Development, 2016, 30(20): 2259–2271
|
24 |
Liu D, Li B Z, Liu H, Guo X J, Yuan Y J. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 117–125
|
25 |
Wang R Z, Gu X L, Yao M D, Pan C H, Liu H, Xiao W H, Wang Y, Yuan Y J. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89–99
|
26 |
Yuan Y J, Wu J C, Wang X. Collaborations of China with the world in Synbio. Frontiers of Chemical Science and Engineering, 2017, 11(1): 1–2
|
/
〈 | 〉 |