REVIEW ARTICLE

Anodization of titanium alloys for orthopedic applications

  • Merve İzmir 1 ,
  • Batur Ercan , 1,2
Expand
  • 1. Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey
  • 2. Biomedical Engineering Program, Middle East Technical University, 066800 Ankara, Turkey

Received date: 04 Apr 2018

Accepted date: 13 Jun 2018

Published date: 25 Feb 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been widely investigated for orthopedic applications. Briefly, anodization is the growth of a controlled oxide film on a metallic component attached to the anode of an electrochemical cell. This review provides an overview of the anodization technique to grow nanostructured oxide films on titanium and titanium alloys and summarizes the interactions between anodized titanium alloy surfaces with cells in terms of cellular adhesion, proliferation and differentiation. It will start with summarizing the mechanism of nanofeatured oxide fabrication on titanium alloys and then switch its focus on the latest findings for anodization of titanium alloys, including the use of fluoride free electrolytes and anodization of 3D titanium foams. The review will also highlight areas requiring further research to successfully translate anodized titanium alloys to clinics for orthopedic applications.

Cite this article

Merve İzmir , Batur Ercan . Anodization of titanium alloys for orthopedic applications[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(1) : 28 -45 . DOI: 10.1007/s11705-018-1759-y

Acknowledgement

This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Grant Number 117M187).
1
Li B, Webster T. Orthopedic Biomaterials: Advances and Applications. Cham: Springer International Publishing, 2017, 31–32

2
Kurtz S M, Ong K L, Schmier J, Mowat F, Saleh K, Dybvik E, Kärrholm J, Garellick G, Havelin L I, Furnes O, Malchau H, Lau E. Future clinical and economic impact of revision total hip and knee arthroplasty. Journal of Bone and Joint Surgery (American), 2007, 89(Suppl 3): 144–151

PMID

3
Etzioni D A, Liu J H, Maggard M A, Ko C Y. The aging population and its impact on the surgery workforce. Annals of Surgery, 2003, 238(2): 170–177

DOI PMID

4
Ramiah R D, Ashmore A M, Whitley E, Bannister G C. Ten-year life expectancy after primary total hip replacement. Journal of Bone and Joint Surgery. British Volume, 2007, 89(10): 1299–1302

DOI PMID

5
Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(1): 34–40

PMID

6
Etkin C D, Springer B D. The American joint replacement registry—the first 5 years. Arthroplasty Today, 2017, 3(2): 67–69

DOI PMID

7
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637

DOI

8
Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639

DOI PMID

9
Bütev E, Esen Z, Bor Ş. Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 127–138

DOI PMID

10
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Metallic biomaterials: Current challenges and opportunities. Materials, 2017, 10(8): 884

DOI PMID

11
Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials, 2012, 5(9): 1528–1545

DOI

12
Rogers S D, Howie D W, Graves S E, Pearcy M J, Haynes D R. In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. Journal of Bone and Joint Surgery, 1997, 79(2): 311–315

DOI PMID

13
Popat K C, Leoni L, Grimes C A, Desai T A. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28(21): 3188–3197

DOI PMID

14
Palmer L C, Newcomb C J, Kaltz S R, Spoerke E D, Stupp S I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 2008, 108(11): 4754–4783

DOI PMID

15
Liliensiek S J, Nealey P, Murphy C J. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Engineering. Part A, 2009, 15(9): 2643–2651

DOI PMID

16
Rafieerad A, Zalnezhad E, Bushroa A, Hamouda A, Sarraf M, Nasiri-Tabrizi B. Self-organized TiO2 nanotube layer on Ti-6Al-7Nb for biomedical application. Surface and Coatings Technology, 2015, 265: 24–31

DOI

17
Macak J M, Tsuchiya H, Taveira L, Ghicov A, Schmuki P. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research Part A, 2005, 75(4): 928–933

DOI PMID

18
Mahshid S, Dolati A, Goodarzi M, Askari M, Ghahramaninezhad A. Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration. ECS Transactions, 2010, 28(7): 67–74

19
Akhlag A, Haq E U, Akhtar W, Arshad M, Ahmad Z. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes. Applied Nanoscience, 2017, 7(8): 701–710

DOI

20
Indira K, Mudali U K, Nishimura T, Rajendran N. A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio- and Tribo-Corrosion, 2015, 1(28): 7–14

21
Macak J, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007, 11(1–2): 3–18

DOI

22
Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13): 2904–2939

DOI PMID

23
Omidvar H, Goodarzi S, Seif A, Azadmehr A R. Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlattices and Microstructures, 2011, 50(1): 26–39

DOI

24
Escada A L, Nakazato R Z, Claro A P. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290

DOI

25
Regonini D, Bowen C, Jaroenworaluck A, Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 2013, 74(12): 377–406

DOI

26
Feng X, Macak J M, Schmuki P. Robust self-organization of oxide nanotubes over a wide pH range. Chemistry of Materials, 2007, 19(7): 1534–1536

DOI

27
Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong L K, Mohamed A R. Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds, 2009, 485(1–2): 478–483

DOI

28
Chen J, Lin J, Chen X. Self-assembled TiO2 nanotube arrays with U-shaped profile by controlling anodization temperature. Journal of Nanomaterials, 2010, 1: 38

29
Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001, 16(12): 3331–3334

DOI

30
Kulkarni M, Mazare A, Schmuki P, Iglic A. Influence of anodization parameters on morphology of TiO2 nanostructured surfaces. Advanced Materials Letters, 2016, 7(1): 23–28

DOI

31
Göttlicher M, Rohnke M, Kunz A, Thomas J, Henning R A, Leichtweiß T, Janek J. Anodization of titanium in radio frequency oxygen discharge. Microstructure, kinetics and transport mechanism. Solid State Ionics, 2016, 290: 130–139

DOI

32
Göttlicher M, Rohnke M, Helth A, Leichtweiß T, Gemming T, Gebert A, Eckert J, Janek J. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9(11): 9201–9210

DOI PMID

33
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637

DOI

34
Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochemical and Solid-State Letters, 2003, 6(3): 12–14

DOI

35
Cai Q, Paulose M, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research, 2005, 20(01): 230–236

DOI

36
Macak J M, Zlamal M, Krysa J, Schmuki P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007, 3(2): 300–304

DOI PMID

37
Mazare A, Dilea M, Ionita D, Titorencu I, Trusca V, Vasile E. Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry, 2012, 87: 124–131

DOI PMID

38
Kaczmarek A, Klekiel T, Krasicka-Cydzik E. Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis, 2010, 42(6–7): 510–514

DOI

39
Park I S, Oh H J, Bae T S. Bioactivity and generation of anodized nanotubular TiO2 layer of Ti-6Al-4V alloy in glycerol solution. Thin Solid Films, 2013, 548: 292–298

DOI

40
Mohan L, Anandan C, Rajendran N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Materials Science and Engineering C, 2015, 50: 394–401

DOI PMID

41
Jha H, Hahn R, Schmuki P. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, 2010, 55(28): 8883–8887

41
Escada A L, Nakazato R Z, Claro A P. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290

DOI

42
Chen P C, Hsieh S J, Chen C C, Zou J. The microstructure and capacitance characterizations of anodic titanium based alloy oxide nanotube. Journal of Nanomaterials, 2013, 2013: 157494

43
Kim W, Choe H, Brantley W A. Nanostructured surface changes of Ti-35Ta-xZr alloys with changes in anodization factors. Thin Solid Films, 2011, 519(15): 4663–4667

DOI

44
Ossowska A, Sobieszczyk S, Supernak M, Zielinski A. Morphology and properties of nanotubular oxide layer on the Ti-13Zr-13Nb alloy. Surface and Coatings Technology, 2014, 258(15): 1239–1248

DOI

45
Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science, 2003, 300(5618): 464–467

DOI PMID

46
Chiu Y H, Lai T H, Chen C Y, Hsieh P Y, Ozasa K, Niinomi M, Okada K, Chang T M, Matsushita N, Sone M, Fully depleted Ti-Nb-Ta-Zr-O nanotubes: Interfacial charge dynamics and solar hydrogen production. ACS Applied Materials & Interfaces, 2018, 10(27): 22997–23008

DOI PMID

47
Richter C, Wu Z, Panaitescu E, Willey R, Menon L. Ultra-high-aspect-ratio titania nanotubes. Advanced Materials, 2007, 19(7): 946–948

DOI

48
Cheong Y L, Yam F K, Ng S W, Hassan Z, Ng S S, Low I M. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. Journal of Porous Materials, 2015, 22(6): 1437–1444

DOI

49
Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18(20): 2341–2348

DOI

50
Kim S, Seong M, Choi J. Rapid breakdown anodization for the preparation of titania nanotubes in halogen-free acids. Journal of the Electrochemical Society, 2015, 162(6): 205–208

DOI

51
Bi Z, Paranthaman M P, Menchhofer P A, Dehoff R R, Bridges C A, Chi M, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 2013, 222: 461–466

DOI

52
Kang J S, Choi H, Kim J, Park H, Kim J Y, Choi J W, Yu S H, Lee K J, Kang Y S, Park S H, Solar cells: Multidimensional anodized titanium foam photoelectrode for efficient utilization of photons in mesoscopic solar cells. Small, 2017, 13(34): 1–7

PMID

53
Schakenraad J M, Busscher H J, Wildevuur C R, Arends J. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. Journal of Biomedical Materials Research, 1986, 20(6): 773–784

DOI PMID

54
Puckett S D, Taylor E, Raimondo T, Webster T J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713

DOI PMID

55
Wang L N, Jin M, Zheng Y, Guan Y, Lu X, Luo J L. Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9(1): 4421–4435

DOI PMID

56
Webster T J, Ergun C, Doremus R H, Siegel R W, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17): 1803–1810

DOI PMID

57
Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19): 4731–4739

DOI PMID

58
Raimondo T, Puckett S, Webster T J. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. International Journal of Nanomedicine, 2010, 5(5): 647–652

PMID

59
Ji W, Han P, Zhao C, Jiang Y, Zhang X. Increased osteoblast adhesion on nanophase Ti6Al4V. Science Bulletin, 2008, 53(11): 1757–1762

DOI

60
Brammer K S, Oh S, Cobb C J, Bjursten L M, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223

DOI PMID

61
Ross A P, Webster T J. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. International Journal of Nanomedicine, 2013, 8(1): 109–117

PMID

62
Yao C, Slamovich E B, Webster T J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Journal of Biomedical Materials Research Part A, 2008, 85A(1): 157–166

DOI PMID

63
Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50(13): 2904–2939

DOI PMID

64
Tan A, Pingguan-Murphy B, Ahmad R, Akbar S. Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 2012, 38(6): 4421–4435

DOI

65
Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters, 2007, 7(6): 1686–1691

DOI PMID

66
Ercan B, Kummer K M, Tarquinio K M, Webster T J. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomaterialia, 2011, 7(7): 3003–3012

DOI PMID

67
Brammer K S, Oh S, Cobb C J, Bjursten L M, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223

DOI PMID

68
Brammer K S, Oh S, Gallagher J O, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters, 2008, 8(3): 786–793

DOI PMID

69
Yu W Q, Zhang Y L, Jiang X Q, Zhang F Q. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 2010, 16(7): 624–630

DOI PMID

70
Oh S, Brammer K S, Li Y S, Teng D, Engler A J, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130–2135

DOI PMID

71
Malec K, Góralska J, Hubalewska-Mazgaj M, Głowacz P, Jarosz M, Brzewski P, Sulka G D, Jaskuła M, Wybrańska I. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. International Journal of Nanomedicine, 2016, 11: 5349–5360

DOI PMID

72
Li G, Zhao Q, Tang H, Li G, Chi Y. Fabrication, characterization and biocompatibility of TiO2 nanotubes via anodization of Ti6Al7Nb. Composite Interfaces, 2016, 23(3): 223–230

DOI

73
Filova E, Fojt J, Kryslova M, Moravec H, Joska L, Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. International Journal of Nanomedicine, 2015, 10(1): 7145–7163

DOI PMID

74
Sul Y T. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. International Journal of Nanomedicine, 2010, 5(5): 87–100

DOI PMID

75
Bjursten L M, Rasmusson L, Oh S, Smith G C, Brammer K S, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A, 2010, 92(3): 1218–1224

PMID

76
Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 2015, 11: 494–502

DOI PMID

77
Puckett S. Select nanofabricated titanium materials for enhancing bone and skin growth of intraosseous transcutaneous amputation prostheses. Dissertation for the Doctoral Degree, Rhode Island: Brown University, 2011, 286–300

78
Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, Liu Y. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials, 2011, 32(29): 6900–6911

DOI PMID

79
Puckett S D, Taylor E, Raimondo T, Webster T J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713

DOI PMID

80
Del Pozo J L, Patel R. Clinical practice. Infection associated with prosthetic joints. New England Journal of Medicine, 2009, 361(8): 787–794

DOI PMID

81
Colon G, Ward B C, Webster T J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 2006, 78A(3): 595–604

DOI PMID

82
Peremarch C P, Tanoira R P, Arenas M A, Matykina E, Conde A, Damborenea J J, Esteban J. Bacterial adherence to anodized titanium alloy. Journal of Physics: Conference Series, 2010, 252(1): 1–8

83
Zhao C, Feng B, Li Y, Tan J, Lu X, Weng J. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Applied Surface Science, 2013, 280: 8–14

DOI

84
Wang T, Weng Z, Liu X, Yeung K W K, Pan H, Wu S. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2(1): 44–50

DOI PMID

85
Crawford G A, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia, 2007, 3(3): 359–367

DOI PMID

86
Zhao M, Li J, Li Y, Wang J, Zuo Y, Jiang J, Wang H. Gradient control of the adhesive force between Ti/TiO2 nanotubular arrays fabricated by anodization. Scientific Reports, 2014, 4(1): 7178

DOI PMID

Outlines

/