REVIEW ARTICLE

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

  • Tong Zhang ,
  • Elie Paillard
Expand
  • Helmholtz Institute Muenster – Forschungszentrum Juelich (IEK 12), Corrensstr. 46, 48149 Muenster, Germany

Received date: 29 Jan 2018

Accepted date: 14 Jun 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

Cite this article

Tong Zhang , Elie Paillard . Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 577 -591 . DOI: 10.1007/s11705-018-1758-z

Acknowledgements

The research presented is part of the ‘SPICY’ project funded by the European Union’s Horizon 2020 research and innovation program under grant No. 653373.
1
U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64

2
Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344

DOI

3
Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958

4
Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91

DOI

5
Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27

6
Winn D A, Steele B C H. Thermodynamic characterisation of non-stoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557

DOI

7
Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09

8
Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964

DOI

9
Armand M B. Chapter – Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161

10
Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774

DOI

11
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<‒1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789

DOI

12
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174

DOI

13
Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88

14
Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212

15
Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221

DOI

16
Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013

DOI

17
Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305

DOI

18
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051

DOI

19
Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719

DOI

20
Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162(2): A3084–A3097

DOI

21
Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548

DOI

22
Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281

DOI

23
Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289

24
Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472

DOI

25
Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150

DOI

26
Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22

27
Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439

DOI

28
Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271

DOI PMID

29
Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30

DOI

30
McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26

DOI

31
Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583

DOI

32
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417

DOI PMID

33
Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618

DOI PMID

34
Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394

DOI

35
Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988

DOI

36
Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050

DOI

37
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961

DOI

38
Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472

DOI

39
Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213

DOI

40
Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179

DOI

41
Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352

DOI

42
Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390

DOI

43
Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97

DOI

44
Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79

DOI

45
Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165(2): 491–499

DOI

46
Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135

DOI

47
Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682

DOI

48
Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013

DOI

49
Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406

DOI

50
Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978

DOI PMID

51
Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65

DOI

52
Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128

DOI

53
Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076

DOI

54
Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810

DOI

55
Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188

DOI

56
Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223

DOI

57
Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178

DOI

58
Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464

DOI

59
Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351

DOI

60
Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120

DOI

61
Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227

DOI

62
Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018

DOI

63
Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350

DOI

64
Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250

DOI

65
Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273

DOI

66
Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978

DOI

67
Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137

DOI

68
Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431

DOI

69
Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312

DOI

70
Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781

DOI

71
Im J, Lee J, Ryou M H, Lee Y M, Cho K Y. Fluorinated carbonate-based electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385

DOI

72
Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32

DOI

73
Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. ChemSusChem, 2014, 7(10): 2939–2946

DOI PMID

74
Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131

DOI

75
Sun X, Angell C A. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications, 2009, 11(7): 1418–1421

DOI

76
Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926

DOI

77
Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920

DOI

78
Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72

DOI

79
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999

DOI

80
Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462

DOI

81
Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102

DOI

82
Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80

DOI

83
Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220

DOI PMID

84
Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16

85
Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06

86
Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077

DOI PMID

87
Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331

DOI

88
Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833

DOI PMID

89
Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895

DOI

90
Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite : Comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochimica Acta, 2013, 102: 133–141

DOI

91
Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. Electrochimica Acta, 2015, 2015(154): 287–293

DOI

92
Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02 537

93
Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82

DOI

94
Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696

DOI

95
Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911

DOI

96
Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31

DOI

97
Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428

DOI

98
Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006

DOI

99
Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium- ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014

100
Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72

DOI

101
Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934

DOI

102
Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrile-based electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20

DOI

103
Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774

DOI

104
Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256

DOI

105
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046

DOI PMID

106
Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899

DOI PMID

107
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196

DOI PMID

108
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032

DOI PMID

109
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423

DOI

110
Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85(9): 559–565

DOI

111
Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032

DOI PMID

112
Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609

DOI PMID

113
Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117

DOI

114
Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685

DOI

115
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426

DOI

116
Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970

DOI

117
Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86

DOI

118
Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389

DOI

119
Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273

DOI

120
Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239

DOI PMID

121
Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609

DOI

122
Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566

DOI

123
Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101

DOI

124
Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958

DOI PMID

125
Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099

DOI PMID

126
Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662

DOI

127
Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924

DOI

128
Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107

DOI

129
Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773

DOI

130
Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031

DOI

131
Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806

DOI

132
Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94

DOI

133
Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128(10): 163–171

DOI

134
Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247

DOI PMID

135
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523

DOI

136
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334(6052): 75–79

DOI PMID

137
Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389

DOI

138
Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266

DOI

139
Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22

DOI

140
Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791

DOI

141
Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137

DOI PMID

142
Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250

DOI

143
Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614

DOI

144
Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29(10): 4181–4189

DOI

145
Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492

DOI

146
Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858

DOI PMID

147
Kang I S, Lee Y S, Kim D W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57

DOI

148
Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132

DOI

149
Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922

DOI

Outlines

/