Frontiers of Chemical Science and Engineering >
Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery
Received date: 29 Jan 2018
Accepted date: 14 Jun 2018
Published date: 18 Sep 2018
Copyright
Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.
Key words: lithium-ion; electrolyte; solid electrolyte interphase; additives; high voltage; graphite
Tong Zhang , Elie Paillard . Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 577 -591 . DOI: 10.1007/s11705-018-1758-z
1 |
U.S. Energy Information Administration. Annual Energy Outlook 2017 with projections to 2050, 2017, 1–64
|
2 |
Lewis G N, Keyes F G. The potential of the lithium electrode. Journal of the American Chemical Society, 1913, 35(4): 340–344
|
3 |
Harris W S. Electrochemical studies in cyclic esters. Dissertation for the Doctoral Degree. Berkeley, CA: University of California, 1958
|
4 |
Jasinski R. Bibliography on the uses of propylene carbonate in high energy, density batteries. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1967, 15: 89–91
|
5 |
Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries: Science and technology. Basel: Springer International Publishing, 2016, 1–27
|
6 |
Winn D A, Steele B C H. Thermodynamic characterisation of non-stoichiometric titanium di-sulphide. Materials Research Bulletin, 1976, 11(5): 551–557
|
7 |
Whittingham M S. Preparation of stoichiometric titanium disulfide. US Patent, 4007055, 1975–05–09
|
8 |
Murphy D W, Trumbore F A. The chemistry of TiS and NbSe cathodes. Journal of the Electrochemical Society, 1976, 123(7): 960–964
|
9 |
Armand M B. Chapter – Intercalation electrodes. Materials for Advanced Batteries. Boston, MA: Springer, 1980, 145–161
|
10 |
Lazzari M, Scrosati B. A Cyclable Lithium organic electrolyte cell based on two intercalation electrodes. Journal of the Electrochemical Society, 1980, 127(3): 773–774
|
11 |
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x<‒1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980, 15(6): 783–789
|
12 |
Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0<x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics, 1981, 3–4: 171–174
|
13 |
Nagaura T, Nagamine M, Tanabe I, Miyamoto N. Solid state batteries with sulfide-based solid electrolytes. Progress in batteries and solar cells, 1989, 8: 84–88
|
14 |
Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells, 1990, 9: 209–212
|
15 |
Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system. Solid State Ionics, 1994, 69(3–4): 212–221
|
16 |
Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of the Electrochemical Society, 1990, 137(7): 2009–2013
|
17 |
Tarascon J M, Guyomard D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ionics, 1994, 69(3–4): 293–305
|
18 |
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of the Electrochemical Society, 1979, 126(12): 2047–2051
|
19 |
Peled E, Menkin S. Review—SEI: Past, present and future. Journal of the Electrochemical Society, 2017, 164(7): A1703–A1719
|
20 |
Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: Flash point and self-extinguishing time measurements. Journal of the Electrochemical Society, 2015, 162(2): A3084–A3097
|
21 |
Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society, 2013, 160(4): A542–A548
|
22 |
Vetter J, Novák P, Wagner M R, Veit C, Möller K C, Besenhard J O, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005, 147(1–2): 269–281
|
23 |
Bresser D, Paillard E, Passerini S. Chapter 7–Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: Emerging cell materials and components. Advances in Batteries for Medium and Large-Scale Energy Storage. Cambridge: Woodhead Publishing, 2015, 213–289
|
24 |
Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society, 1999, 146(2): 470–472
|
25 |
Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochemistry Communications, 1999, 1(3–4): 148–150
|
26 |
Simon B, Boeuve J P. Rechargeable lithium electrochemical cell. US Patent, 5626981, 1994–04–22
|
27 |
Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta, 2002, 47(9): 1423–1439
|
28 |
Santner H J, Korepp C, Winter M, Besenhard J O, Möller K C. In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries. Analytical and Bioanalytical Chemistry, 2004, 379(2): 266–271
|
29 |
Aurbach D, Gnanaraj J S, Geissler W, Schmidt M. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 2004, 151(1): A23–A30
|
30 |
McMillan R, Slegr H, Shu Z X, Wang W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. Journal of Power Sources, 1999, 81–82: 20–26
|
31 |
Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate. Journal of the Electrochemical Society, 2002, 149(12): A1578–A1583
|
32 |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004, 104(10): 4303–4417
|
33 |
Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23): 11503–11618
|
34 |
Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162(2): 1379–1394
|
35 |
Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy & Environmental Science, 2016, 9(6): 1955–1988
|
36 |
Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z. Suppression of an alkyl dicarbonate formation in Li-ion cells. Journal of the Electrochemical Society, 2005, 152(10): A2046–A2050
|
37 |
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W. A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(41): 12954–12961
|
38 |
Wang D Y, Sinha N N, Burns J C, Aiken C P, Petibon R, Dahn J R. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. Journal of the Electrochemical Society, 2014, 161(4): A467–A472
|
39 |
Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. Synthesis and electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 1997, 144(1): 205–213
|
40 |
Amine K. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochemical and Solid-State Letters, 2000, 3(4): 178–179
|
41 |
Kunduraci M, Amatucci G G. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. Journal of the Electrochemical Society, 2006, 153(7): A1345–A1352
|
42 |
Wolfenstine J, Allen J. Ni3+/Ni2+ redox potential in LiNiPO4. Journal of Power Sources, 2005, 142(1–2): 389–390
|
43 |
Yang L, Ravdel B, Lucht B L. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochemical and Solid-State Letters, 2010, 13(8): A95–A97
|
44 |
Hu L, Zhang Z, Amine K. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochemistry Communications, 2013, 35: 76–79
|
45 |
Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 2007, 165(2): 491–499
|
46 |
Xia J, Petibon R, Xiong D, Ma L, Dahn J R. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of Power Sources, 2016, 328: 124–135
|
47 |
Borodin O, Behl W, Jow T R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. Journal of Physical Chemistry C, 2013, 117(17): 8661–8682
|
48 |
Xu M, Zhou L, Dong Y, Chen Y, Garsuch A, Lucht B L. Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). Journal of the Electrochemical Society, 2013, 160(11): A2005–A2013
|
49 |
Xia J, Ma L, Nelson K J, Nie M, Lu Z, Dahn J R. A study of Li-ion cells operated to 4.5 V and at 55 °C. Journal of the Electrochemical Society, 2016, 163(10): A2399–A2406
|
50 |
Cao X, He X, Wang J, Liu H, Röser S, Rad B R, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I. High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Applied Materials & Interfaces, 2016, 8(39): 25971–25978
|
51 |
Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. Journal of the Electrochemical Society, 2009, 156(1): A60–A65
|
52 |
Xue L, Ueno K, Lee S Y, Angell C A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262: 123–128
|
53 |
Abouimrane A, Belharouak I, Amine K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochemistry Communications, 2009, 11(5): 1073–1076
|
54 |
Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science, 2013, 6(6): 1806–1810
|
55 |
Zhang X, Pugh J K, Ross P N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. Journal of the Electrochemical Society, 2001, 148(5): E183–E188
|
56 |
Assary R S, Curtiss L A, Redfern P C, Zhang Z, Amine K. Computational studies of polysiloxanes: Oxidation potentials and decomposition reactions. Journal of Physical Chemistry C, 2011, 115(24): 12216–12223
|
57 |
Xu K, Ding S P, Jow T R. Toward reliable values of electrochemical stability limits for electrolytes. Journal of the Electrochemical Society, 1999, 146(11): 4172–4178
|
58 |
Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002, 109(2): 458–464
|
59 |
Zhang X, Devine T M. Identity of passive film formed on aluminum in Li-ion battery electrolytes with LiPF6. Journal of the Electrochemical Society, 2006, 153(9): B344–B351
|
60 |
Xu K, Zhang S, Jow T R. Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochemical and Solid-State Letters, 2003, 6(6): A117–A120
|
61 |
Zhuang G V, Xu K, Jow T R, Ross P N Jr. Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochemical and Solid-State Letters, 2004, 7(8): A224–A227
|
62 |
Ma L, Glazier S L, Petibon R, Xia J, Peters J M, Liu Q, Allen J, Doig R N C, Dahn J R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. Journal of the Electrochemical Society, 2017, 164(1): A5008–A5018
|
63 |
Xia J, Nie M, Burns J C, Xiao A, Lamanna W M, Dahn J R. Fluorinated electrolyte for 4.5 V Li(Ni0.4Mn0.4Co0.2)O2/graphite Li-ion cells. Journal of Power Sources, 2016, 307: 340–350
|
64 |
Xia J, Glazier S L, Petibon R, Dahn J R. Improving linear alkyl carbonate electrolytes with electrolyte additives. Journal of the Electrochemical Society, 2017, 164(6): A1239–A1250
|
65 |
Xia J, Liu Q, Hebert A, Hynes T, Petibon R, Dahn J R. Succinic anhydride as an enabler in ethylene carbonate-free linear alkyl carbonate electrolytes for high voltage Li-ion cells. Journal of the Electrochemical Society, 2017, 164(6): A1268–A1273
|
66 |
Lewandowski A, Kurc B, Stepniak I, Swiderska-Mocek A. Properties of Li-graphite and LiFePO4 electrodes in LiPF6-sulfolane electrolyte. Electrochimica Acta, 2011, 56(17): 5972–5978
|
67 |
Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. Graphite/LiFePO4 lithium-ion battery working at the heat engine coolant temperature. Journal of Power Sources, 2014, 266: 132–137
|
68 |
Xia J, Self J, Ma L, Dahn J R. Sulfolane-based electrolyte for high voltage Li(Ni0.42Mn0.42Co0.16)O2 (NMC442)/graphite pouch cells. Journal of the Electrochemical Society, 2015, 162(8): A1424–A1431
|
69 |
Hilbig P, Ibing L, Wagner R, Winter M, Cekic-Laskovic I. Ethyl methyl sulfone-based electrolytes for lithium ion battery applications. Energies, 2017, 10(9): 1312
|
70 |
Hu L, Xue Z, Amine K, Zhang Z. Fluorinated electrolytes for 5 V Li-ion chemistry: synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell. Journal of the Electrochemical Society, 2014, 161(12): A1777–A1781
|
71 |
Im J, Lee J, Ryou M H, Lee Y M, Cho K Y. Fluorinated carbonate-based electrolyte for high-voltage Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium-ion battery. Journal of the Electrochemical Society, 2017, 164(1): A6381–A6385
|
72 |
Kita F, Sakata H, Sinomoto S, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Nie J, Pavlenko N V, Yagupolskii Y L. Characteristics of the electrolyte with fluoro organic lithium salts. Journal of Power Sources, 2000, 90(1): 27–32
|
73 |
Kalhoff J, Bresser D, Bolloli M, Alloin F, Sanchez J Y, Passerini S. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. ChemSusChem, 2014, 7(10): 2939–2946
|
74 |
Xiong D J, Bauer M, Ellis L D, Hynes T, Hyatt S, Hall D S, Dahn J R. Some physical properties of ethylene carbonate-free electrolytes. Journal of the Electrochemical Society, 2018, 165(2): A126–A131
|
75 |
Sun X, Angell C A. Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochemistry Communications, 2009, 11(7): 1418–1421
|
76 |
Xu K, Angell C A. Sulfone-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 2002, 149(7): A920–A926
|
77 |
Lee S Y, Ueno K, Angell C A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A walden plot analysis of the maximally conductive compositions. Journal of Physical Chemistry C, 2012, 116(45): 23915–23920
|
78 |
Xu K, Angell C A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. Journal of the Electrochemical Society, 1998, 145(4): L70–L72
|
79 |
Wang Y, Xing L, Li W, Bedrov D. Why do sulfone-based electrolytes show stability at high voltages? insight from density functional theory. Journal of Physical Chemistry Letters, 2013, 4(22): 3992–3999
|
80 |
Brenner A. Note on an organic-electrolyte cell with a high voltage. Journal of the Electrochemical Society, 1971, 118(3): 461–462
|
81 |
Zhang T, de Meatza I, Qi X, Paillard E. Enabling steady graphite anode cycling with high voltage, additive-free, sulfolane-based electrolyte: Role of the binder. Journal of Power Sources, 2017, 356: 97–102
|
82 |
Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochemical and Solid-State Letters, 2008, 11(5): A76–A80
|
83 |
Nguyen C C, Yoon T, Seo D M, Guduru P, Lucht B L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Applied Materials & Interfaces, 2016, 8(19): 12211–12220
|
84 |
Kim N. Electrolyte for lithium ion battery to control swelling. US Patent, 20050233207A1, 2004–04–16
|
85 |
Hamamoto T, Abe K, Tsutomu T. Non-aqueous electrolyte and lithium secondary battery using the same. US Patent, 20070207389A1, 2007–09–06
|
86 |
Ma T, Xu G L, Li Y, Wang L, He X, Zheng J, Liu J, Engelhard M H, Zapol P, Curtiss L A, Jorne J, Amine K, Chen Z. Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. Journal of Physical Chemistry Letters, 2017, 8(5): 1072–1077
|
87 |
Wu F, Xiang J, Li L, Chen J, Tan G, Chen R. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries. Journal of Power Sources, 2012, 202: 322–331
|
88 |
Fujii K, Seki S, Fukuda S, Kanzaki R, Takamuku T, Umebayashi Y, Ishiguro S. Anion conformation of low-viscosity room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl) imide. Journal of Physical Chemistry B, 2007, 111(44): 12829–12833
|
89 |
Paillard E, Zhou Q, Henderson W A, Appetecchi G B, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156(11): A891–A895
|
90 |
Gebresilassie G, Grugeon S, Gachot G, Armand M, Laruelle S. LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite : Comparing thermal stabilities and identification of specific SEI-reinforcing additives. Electrochimica Acta, 2013, 102: 133–141
|
91 |
Petibon R, Aiken C P, Ma L, Xiong D, Dahn J R. The use of ethyl acetate as a sole solvent in highly concentrated electrolyte for Li-ion batteries. Electrochimica Acta, 2015, 2015(154): 287–293
|
92 |
Zhang T, Kaymaksiz S, de Meatza I, Paillard E. Practical sulfolane-based electrolytes: Choice of Li salt for graphite anode operation. Honolulu: ECS Meeting Abstracts, 2016, MA2016–02 537
|
93 |
Li L, Zhou S, Han H, Li H, Nie J, Armand M, Zhou Z, Huang X. Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. Journal of the Electrochemical Society, 2011, 158(2): A74–A82
|
94 |
Abouimrane A, Ding J, Davidson I J. Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations. Journal of Power Sources, 2009, 189(1): 693–696
|
95 |
Myung S T, Hitoshi Y, Sun Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21(27): 9891–9911
|
96 |
Dalavi S, Xu M, Knight B, Lucht B L. Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochemical and Solid-State Letters, 2012, 15(2): A28–A31
|
97 |
Zhang S S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006, 8(9): 1423–1428
|
98 |
Nie M, Lucht B L. Role of lithium salt on solid electrolyte interface (SEI) formation and dtructure in lithium ion batteries. Journal of the Electrochemical Society, 2014, 161(6): A1001–A1006
|
99 |
Knight B M. PC based electrolytes with LiDFOB as an alternative salt for lithium- ion batteries. Dissertation for the Doctoral Degree. Kinston, RI: Univeristy of Rhode Island, 2014
|
100 |
Chen Z, Qin Y, Liu J, Amine K. Lithium difluoro(oxalato)borate as additive to improve the thermal stability of lithiated graphite. Electrochemical and Solid-State Letters, 2009, 12(4): A69–A72
|
101 |
Lazar M L, Lucht B L. Carbonate free electrolyte for lithium ion batteries containing butyrolactone and methyl butyrate. Journal of the Electrochemical Society, 2015, 162(6): A928–A934
|
102 |
Ehteshami N, Paillard E. Ethylene carbonate-free, adiponitrile-based electrolytes compatible with graphite anodes. ECS Transactions, 2015, 77(1): 11–20
|
103 |
Seki S, Takei K, Miyashiro H, Watanabe M. Physicochemical and electrochemical properties of glyme-LiN(SO2F)2 complex for safe lithium-ion secondary battery electrolyte. Journal of the Electrochemical Society, 2011, 158(6): A769–A774
|
104 |
Moon H, Tatara R, Mandai T, Ueno K, Yoshida K, Tachikawa N, Yasuda T, Dokko K, Watanabe M. Mechanism of Li ion desolvation at the interface of graphite electrode and glyme-Li salt solvate ionic liquids. Journal of Physical Chemistry C, 2014, 118(35): 20246–20256
|
105 |
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society, 2014, 136(13): 5039–5046
|
106 |
Yamada Y, Usui K, Chiang C H, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Applied Materials & Interfaces, 2014, 6(14): 10892–10899
|
107 |
Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Electrochemistry Communications, 2013, 49(95): 11194–11196
|
108 |
Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications, 2016, 7: 12032
|
109 |
Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. Journal of the Electrochemical Society, 2015, 162(14): A2406–A2423
|
110 |
Yamada Y. Developing new functionalities of superconcentrated electrolytes for lithium-ion batteries. Electrochemistry, 2017, 85(9): 559–565
|
111 |
Zheng J, Lochala J A, Kwok A, Deng Z D, Xiao J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advancement of Science, 2017, 4(8): 1700032
|
112 |
Lu D, Tao J, Yan P, Henderson W A, Li Q, Shao Y, Helm M L, Borodin O, Graff G L, Polzin B, Wang C M, Engelhard M, Zhang J G, De Yoreo J J, Liu J, Xiao J. Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes. Nano Letters, 2017, 17(3): 1602–1609
|
113 |
Von Wald Cresce A, Borodin O, Xu K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite. Journal of Physical Chemistry C, 2012, 116(50): 26111–26117
|
114 |
Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion. Journal of Physical Chemistry C, 2010, 114(26): 11680–11685
|
115 |
McOwen D W, Seo D M, Borodin O, Vatamanu J, Boyle P D, Henderson W A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy & Environmental Science, 2014, 7(1): 416–426
|
116 |
Moon H, Mandai T, Tatara R, Ueno K, Yamazaki A, Yoshida K, Seki S, Dokko K, Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li-Ion and Li-sulfur batteries. Journal of Physical Chemistry C, 2015, 119(8): 3957–3970
|
117 |
Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta, 1999, 45(1–2): 67–86
|
118 |
Nie M, Abraham D P, Seo D M, Chen Y, Bose A, Lucht B L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. Journal of Physical Chemistry C, 2013, 117(48): 25381–25389
|
119 |
Pan Y, Wang G, Lucht B L. Cycling performance and surface analysis of lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite. Electrochimica Acta, 2016, 217: 269–273
|
120 |
Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews, 2017, 117(10): 7190–7239
|
121 |
Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. Journal of Power Sources, 2009, 194(2): 601–609
|
122 |
Zhao Y, Bostrom T. Application of ionic liquids in solar cells and batteries: A review. Current Organic Chemistry, 2015, 19(6): 556–566
|
123 |
Howlett P C, MacFarlane D R, Hollenkamp A F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochemical and Solid-State Letters, 2004, 7(5): A97–A101
|
124 |
Grande L, von Zamory J, Koch S L, Kalhoff J, Paillard E, Passerini S. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Applied Materials & Interfaces, 2015, 7(10): 5950–5958
|
125 |
Holzapfel M, Jost C, Novák P. Stable cycling of graphite in an ionic liquid based electrolyte. Chemical Communications, 2004, (18): 2098–2099
|
126 |
Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources, 2006, 162(1): 658–662
|
127 |
Yamagata M, Tanaka K, Tsuruda Y, Fukuda S, Nakasuka S, Kono M, Ishikawa M. The first lithium-ion battery with ionic liquid electrolyte demonstrated in extreme environment of space. Electrochemistry, 2015, 83(10): 918–924
|
128 |
Reiter J, Paillard E, Grande L, Winter M, Passerini S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochimica Acta, 2013, 91: 101–107
|
129 |
Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279: 766–773
|
130 |
Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S. Ionic liquid electrolytes for safer lithium batteries. Journal of the Electrochemical Society, 2017, 164(1): A6026–A6031
|
131 |
Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochemistry Communications, 2007, 9(12): 2801–2806
|
132 |
Mueller F, Bresser D, Paillard E, Winter M, Passerini S. Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles. Journal of Power Sources, 2013, 236: 87–94
|
133 |
Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128(10): 163–171
|
134 |
Sen U K, Mitra S. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. ACS Applied Materials & Interfaces, 2013, 5(4): 1240–1247
|
135 |
Bresser D, Paillard E, Kloepsch R, Krueger S, Fiedler M, Schmitz R, Baither D, Winter M, Passerini S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Advanced Energy Materials, 2013, 3(4): 513–523
|
136 |
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, 334(6052): 75–79
|
137 |
Komaba S, Yabuuchi N, Ozeki T, Han Z J, Shimomura K, Yui H, Katayama Y, Miura T. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries. Journal of Physical Chemistry C, 2012, 116(1): 1380–1389
|
138 |
Inagaki M. Carbon coating for enhancing the functionalities of materials. Carbon, 2012, 50(9): 3247–3266
|
139 |
Sharova V, Moretti A, Giffin G, Carvalho D, Passerini S. Evaluation of carbon-coated graphite as a negative electrode material for Li-ion batteries. C Journal of Carbon Research, 2017, 3(3): 22
|
140 |
Menkin S, Golodnitsky D, Peled E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications. Electrochemistry Communications, 2009, 11(9): 1789–1791
|
141 |
Li F S, Wu Y S, Chou J, Winter M, Wu N L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Advanced Materials, 2015, 27(1): 130–137
|
142 |
Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. Journal of Power Sources, 2012, 198(15): 243–250
|
143 |
Verma P, Novák P. Formation of artificial solid electrolyte interphase by grafting for improving Li-ion intercalation and preventing exfoliation of graphite. Carbon, 2012, 50(7): 2599–2614
|
144 |
Ma L, Kim M S, Archer L A. Stable artificial solid electrolyte interphases for lithium batteries. Chemistry of Materials, 2017, 29(10): 4181–4189
|
145 |
Fan L, Zhuang H L, Gao L, Lu Y, Archer L A. Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(7): 3483–3492
|
146 |
Li N W, Yin Y X, Yang C P, Guo Y G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9): 1853–1858
|
147 |
Kang I S, Lee Y S, Kim D W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. Journal of the Electrochemical Society, 2014, 161(1): A53–A57
|
148 |
Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, Ding M S, Borodin O, Vatamanu J, Schroeder M A, Eidson N, Wang C, Xu K. 4.0 V aqueous Li-ion batteries. Joule, 2017, 1(1): 122–132
|
149 |
Guk H, Kim D, Choi S H, Chung D H, Han S S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: Molecular dynamics simulations. Journal of the Electrochemical Society, 2016, 163(6): A917–A922
|
/
〈 | 〉 |